Link Floer homology detects the Thurston norm
Geometry & topology, Tome 13 (2009) no. 5, pp. 2991-3019.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that, for a link L in a rational homology 3–sphere, the link Floer homology detects the Thurston norm of its complement. This result has been proved by Ozsváth and Szabó for links in S3. As an ingredient of the proof, we show that knot Floer homology detects the genus of null-homologous links in rational homology spheres, which is a generalization of an earlier result of the author. Our argument uses the techniques due to Ozsváth and Szabó, Hedden and the author.

DOI : 10.2140/gt.2009.13.2991
Keywords: link Floer homology, link, rational homology 3-sphere, Thurston norm, taut foliation

Ni, Yi 1

1 Department of Mathematics, Columbia University, MC 4406, 2990 Broadway, New York, NY 10027
@article{GT_2009_13_5_a8,
     author = {Ni, Yi},
     title = {Link {Floer} homology detects the {Thurston} norm},
     journal = {Geometry & topology},
     pages = {2991--3019},
     publisher = {mathdoc},
     volume = {13},
     number = {5},
     year = {2009},
     doi = {10.2140/gt.2009.13.2991},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2991/}
}
TY  - JOUR
AU  - Ni, Yi
TI  - Link Floer homology detects the Thurston norm
JO  - Geometry & topology
PY  - 2009
SP  - 2991
EP  - 3019
VL  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2991/
DO  - 10.2140/gt.2009.13.2991
ID  - GT_2009_13_5_a8
ER  - 
%0 Journal Article
%A Ni, Yi
%T Link Floer homology detects the Thurston norm
%J Geometry & topology
%D 2009
%P 2991-3019
%V 13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2991/
%R 10.2140/gt.2009.13.2991
%F GT_2009_13_5_a8
Ni, Yi. Link Floer homology detects the Thurston norm. Geometry & topology, Tome 13 (2009) no. 5, pp. 2991-3019. doi : 10.2140/gt.2009.13.2991. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2991/

[1] D Gabai, private communication

[2] D Gabai, Foliations and the topology of $3$–manifolds, J. Differential Geom. 18 (1983) 445

[3] D Gabai, Foliations and the topology of $3$–manifolds. III, J. Differential Geom. 26 (1987) 479

[4] M Hedden, On knot Floer homology and cabling, Algebr. Geom. Topol. 5 (2005) 1197

[5] U Kaiser, Link theory in manifolds, Lecture Notes in Math. 1669, Springer (1997)

[6] E Kalfagianni, Power series link invariants and the Thurston norm, Topology Appl. 101 (2000) 107

[7] R Lipshitz, A cylindrical reformulation of Heegaard Floer homology, Geom. Topol. 10 (2006) 955

[8] Y Ni, A note on knot Floer homology of links, Geom. Topol. 10 (2006) 695

[9] P Ozsváth, Z Szabó, Knot Floer homology and rational surgeries

[10] P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311

[11] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58

[12] P Ozsváth, Z Szabó, Holomorphic triangle invariants and the topology of symplectic four-manifolds, Duke Math. J. 121 (2004) 1

[13] P Ozsváth, Z Szabó, Holomorphic disks, link invariants and the multi-variable Alexander polynomial, Algebr. Geom. Topol. 8 (2008) 615

[14] P Ozsváth, Z Szabó, Link Floer homology and the Thurston norm, J. Amer. Math. Soc. 21 (2008) 671

[15] J Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003)

[16] D Rolfsen, Knots and links, Math. Lecture Ser. 7, Publish or Perish (1976)

[17] M Scharlemann, A Thompson, Link genus and the Conway moves, Comment. Math. Helv. 64 (1989) 527

[18] F Sergeraert, Feuilletages et difféomorphismes infiniment tangents à l'identité, Invent. Math. 39 (1977) 253

[19] W P Thurston, A norm for the homology of $3$–manifolds, Mem. Amer. Math. Soc. 59 (1986)

Cité par Sources :