Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that, for a link in a rational homology 3–sphere, the link Floer homology detects the Thurston norm of its complement. This result has been proved by Ozsváth and Szabó for links in . As an ingredient of the proof, we show that knot Floer homology detects the genus of null-homologous links in rational homology spheres, which is a generalization of an earlier result of the author. Our argument uses the techniques due to Ozsváth and Szabó, Hedden and the author.
Ni, Yi 1
@article{GT_2009_13_5_a8, author = {Ni, Yi}, title = {Link {Floer} homology detects the {Thurston} norm}, journal = {Geometry & topology}, pages = {2991--3019}, publisher = {mathdoc}, volume = {13}, number = {5}, year = {2009}, doi = {10.2140/gt.2009.13.2991}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2991/} }
Ni, Yi. Link Floer homology detects the Thurston norm. Geometry & topology, Tome 13 (2009) no. 5, pp. 2991-3019. doi : 10.2140/gt.2009.13.2991. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2991/
[1]
, private communication[2] Foliations and the topology of $3$–manifolds, J. Differential Geom. 18 (1983) 445
,[3] Foliations and the topology of $3$–manifolds. III, J. Differential Geom. 26 (1987) 479
,[4] On knot Floer homology and cabling, Algebr. Geom. Topol. 5 (2005) 1197
,[5] Link theory in manifolds, Lecture Notes in Math. 1669, Springer (1997)
,[6] Power series link invariants and the Thurston norm, Topology Appl. 101 (2000) 107
,[7] A cylindrical reformulation of Heegaard Floer homology, Geom. Topol. 10 (2006) 955
,[8] A note on knot Floer homology of links, Geom. Topol. 10 (2006) 695
,[9] Knot Floer homology and rational surgeries
, ,[10] Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311
, ,[11] Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58
, ,[12] Holomorphic triangle invariants and the topology of symplectic four-manifolds, Duke Math. J. 121 (2004) 1
, ,[13] Holomorphic disks, link invariants and the multi-variable Alexander polynomial, Algebr. Geom. Topol. 8 (2008) 615
, ,[14] Link Floer homology and the Thurston norm, J. Amer. Math. Soc. 21 (2008) 671
, ,[15] Floer homology and knot complements, PhD thesis, Harvard University (2003)
,[16] Knots and links, Math. Lecture Ser. 7, Publish or Perish (1976)
,[17] Link genus and the Conway moves, Comment. Math. Helv. 64 (1989) 527
, ,[18] Feuilletages et difféomorphismes infiniment tangents à l'identité, Invent. Math. 39 (1977) 253
,[19] A norm for the homology of $3$–manifolds, Mem. Amer. Math. Soc. 59 (1986)
,Cité par Sources :