Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
For all systolic groups we construct boundaries which are –structures. This implies the Novikov conjecture for torsion-free systolic groups. The boundary is constructed via a system of distinguished geodesics in a systolic complex, which we prove to have coarsely similar properties to geodesics in spaces.
Osajda, Damian 1 ; Przytycki, Piotr 2
@article{GT_2009_13_5_a6, author = {Osajda, Damian and Przytycki, Piotr}, title = {Boundaries of systolic groups}, journal = {Geometry & topology}, pages = {2807--2880}, publisher = {mathdoc}, volume = {13}, number = {5}, year = {2009}, doi = {10.2140/gt.2009.13.2807}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2807/} }
Osajda, Damian; Przytycki, Piotr. Boundaries of systolic groups. Geometry & topology, Tome 13 (2009) no. 5, pp. 2807-2880. doi : 10.2140/gt.2009.13.2807. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2807/
[1] Infinite groups with fixed point properties, Geom. Topol. 13 (2009) 1229
, , , , , ,[2] The Borel Conjecture for hyperbolic and $\mathrm{CAT}(0)$–groups
, ,[3] Local homology properties of boundaries of groups, Michigan Math. J. 43 (1996) 123
,[4] The boundary of negatively curved groups, J. Amer. Math. Soc. 4 (1991) 469
, ,[5] Cut points and canonical splittings of hyperbolic groups, Acta Math. 180 (1998) 145
,[6] $\mathcal{VH}$ complexes, towers and subgroups of $F\times F$, Math. Proc. Cambridge Philos. Soc. 126 (1999) 481
, ,[7] Controlled algebra and the Novikov conjectures for $K$– and $L$–theory, Topology 34 (1995) 731
, ,[8] Graphs of some $\mathrm{CAT}(0)$ complexes, Adv. in Appl. Math. 24 (2000) 125
,[9] Dismantlability of weakly systolic complexes and applications, in preparation
, ,[10] Spaces with nonpositive curvature and their ideal boundaries, Topology 39 (2000) 549
, ,[11] Classifying spaces and boundaries for relatively hyperbolic groups, Proc. London Math. Soc. $(3)$ 86 (2003) 666
,[12] On Bestvina–Mess formula, from: "Topological and asymptotic aspects of group theory" (editors R Grigorchuk, M Mihalik, M Sapir, Z Šunik), Contemp. Math. 394, Amer. Math. Soc. (2006) 77
,[13] Topology, Allyn and Bacon (1966)
,[14] Systolic spaces with isolated flats, submitted
,[15] Flats and the flat torus theorem in systolic spaces, Geom. Topol. 13 (2009) 661
,[16] EZ–structures and topological applications, Comment. Math. Helv. 80 (2005) 103
, ,[17] Complexes simpliciaux hyperboliques de grande dimension, Prepublication Orsay 71 (2003)
,[18] Separating quasi-convex subgroups in $7$–systolic groups, Groups Geom. Dyn. 2 (2008) 223
, ,[19] Simplicial nonpositive curvature, Publ. Math. Inst. Hautes Études Sci. (2006) 1
, ,[20] Filling invariants of systolic complexes and groups, Geom. Topol. 11 (2007) 727
, ,[21] Survey on classifying spaces for families of subgroups, from: "Infinite groups: geometric, combinatorial and dynamical aspects" (editors L Bartholdi, T Ceccherini-Silberstein, T Smirnova-Nagnibeda, A Zuk), Progr. Math. 248, Birkhäuser (2005) 269
,[22] Boundaries and JSJ decompositions of $\mathrm{CAT}(0)$–groups
, ,[23] $\underline EG$ for systolic groups, Comment. Math. Helv. 84 (2009) 159
,[24] Split injectivity of the Baum–Connes assembly map
,Cité par Sources :