Boundaries of systolic groups
Geometry & topology, Tome 13 (2009) no. 5, pp. 2807-2880.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

For all systolic groups we construct boundaries which are EZ–structures. This implies the Novikov conjecture for torsion-free systolic groups. The boundary is constructed via a system of distinguished geodesics in a systolic complex, which we prove to have coarsely similar properties to geodesics in CAT(0) spaces.

DOI : 10.2140/gt.2009.13.2807
Keywords: systolic group, simplicial nonpositive curvature, boundaries of groups, $Z$–set compactification

Osajda, Damian 1 ; Przytycki, Piotr 2

1 Instytut Matematyczny, Uniwersytet Wrocławski, pl Grunwaldzki 2/4, 50–384 Wrocław, Poland
2 Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-956 Warsaw, Poland
@article{GT_2009_13_5_a6,
     author = {Osajda, Damian and Przytycki, Piotr},
     title = {Boundaries of systolic groups},
     journal = {Geometry & topology},
     pages = {2807--2880},
     publisher = {mathdoc},
     volume = {13},
     number = {5},
     year = {2009},
     doi = {10.2140/gt.2009.13.2807},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2807/}
}
TY  - JOUR
AU  - Osajda, Damian
AU  - Przytycki, Piotr
TI  - Boundaries of systolic groups
JO  - Geometry & topology
PY  - 2009
SP  - 2807
EP  - 2880
VL  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2807/
DO  - 10.2140/gt.2009.13.2807
ID  - GT_2009_13_5_a6
ER  - 
%0 Journal Article
%A Osajda, Damian
%A Przytycki, Piotr
%T Boundaries of systolic groups
%J Geometry & topology
%D 2009
%P 2807-2880
%V 13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2807/
%R 10.2140/gt.2009.13.2807
%F GT_2009_13_5_a6
Osajda, Damian; Przytycki, Piotr. Boundaries of systolic groups. Geometry & topology, Tome 13 (2009) no. 5, pp. 2807-2880. doi : 10.2140/gt.2009.13.2807. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2807/

[1] G Arzhantseva, M R Bridson, T Januszkiewicz, I J Leary, A Minasyan, J Świątkowski, Infinite groups with fixed point properties, Geom. Topol. 13 (2009) 1229

[2] A Bartels, W Lück, The Borel Conjecture for hyperbolic and $\mathrm{CAT}(0)$–groups

[3] M Bestvina, Local homology properties of boundaries of groups, Michigan Math. J. 43 (1996) 123

[4] M Bestvina, G Mess, The boundary of negatively curved groups, J. Amer. Math. Soc. 4 (1991) 469

[5] B H Bowditch, Cut points and canonical splittings of hyperbolic groups, Acta Math. 180 (1998) 145

[6] M R Bridson, D T Wise, $\mathcal{VH}$ complexes, towers and subgroups of $F\times F$, Math. Proc. Cambridge Philos. Soc. 126 (1999) 481

[7] G Carlsson, E K Pedersen, Controlled algebra and the Novikov conjectures for $K$– and $L$–theory, Topology 34 (1995) 731

[8] V Chepoi, Graphs of some $\mathrm{CAT}(0)$ complexes, Adv. in Appl. Math. 24 (2000) 125

[9] V Chepoi, D Osajda, Dismantlability of weakly systolic complexes and applications, in preparation

[10] C B Croke, B Kleiner, Spaces with nonpositive curvature and their ideal boundaries, Topology 39 (2000) 549

[11] F Dahmani, Classifying spaces and boundaries for relatively hyperbolic groups, Proc. London Math. Soc. $(3)$ 86 (2003) 666

[12] A N Dranishnikov, On Bestvina–Mess formula, from: "Topological and asymptotic aspects of group theory" (editors R Grigorchuk, M Mihalik, M Sapir, Z Šunik), Contemp. Math. 394, Amer. Math. Soc. (2006) 77

[13] J Dugundji, Topology, Allyn and Bacon (1966)

[14] T Elsner, Systolic spaces with isolated flats, submitted

[15] T Elsner, Flats and the flat torus theorem in systolic spaces, Geom. Topol. 13 (2009) 661

[16] F T Farrell, J F Lafont, EZ–structures and topological applications, Comment. Math. Helv. 80 (2005) 103

[17] F Haglund, Complexes simpliciaux hyperboliques de grande dimension, Prepublication Orsay 71 (2003)

[18] F Haglund, J Świątkowski, Separating quasi-convex subgroups in $7$–systolic groups, Groups Geom. Dyn. 2 (2008) 223

[19] T Januszkiewicz, J Świątkowski, Simplicial nonpositive curvature, Publ. Math. Inst. Hautes Études Sci. (2006) 1

[20] T Januszkiewicz, J Świątkowski, Filling invariants of systolic complexes and groups, Geom. Topol. 11 (2007) 727

[21] W Lück, Survey on classifying spaces for families of subgroups, from: "Infinite groups: geometric, combinatorial and dynamical aspects" (editors L Bartholdi, T Ceccherini-Silberstein, T Smirnova-Nagnibeda, A Zuk), Progr. Math. 248, Birkhäuser (2005) 269

[22] P Papasoglu, E Swenson, Boundaries and JSJ decompositions of $\mathrm{CAT}(0)$–groups

[23] P Przytycki, $\underline EG$ for systolic groups, Comment. Math. Helv. 84 (2009) 159

[24] D Rosenthal, Split injectivity of the Baum–Connes assembly map

Cité par Sources :