Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a Gorenstein orbifold with projective coarse moduli space and let be a crepant resolution of . We state a conjecture relating the genus-zero Gromov–Witten invariants of to those of , which differs in general from the Crepant Resolution Conjectures of Ruan and Bryan–Graber, and prove our conjecture when and . As a consequence, we see that the original form of the Bryan–Graber Conjecture holds for but is probably false for . Our methods are based on mirror symmetry for toric orbifolds.
Coates, Tom 1 ; Iritani, Hiroshi 2 ; Tseng, Hsian-Hua 3
@article{GT_2009_13_5_a4, author = {Coates, Tom and Iritani, Hiroshi and Tseng, Hsian-Hua}, title = {Wall-crossings in toric {Gromov{\textendash}Witten} theory {I:} crepant examples}, journal = {Geometry & topology}, pages = {2675--2744}, publisher = {mathdoc}, volume = {13}, number = {5}, year = {2009}, doi = {10.2140/gt.2009.13.2675}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2675/} }
TY - JOUR AU - Coates, Tom AU - Iritani, Hiroshi AU - Tseng, Hsian-Hua TI - Wall-crossings in toric Gromov–Witten theory I: crepant examples JO - Geometry & topology PY - 2009 SP - 2675 EP - 2744 VL - 13 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2675/ DO - 10.2140/gt.2009.13.2675 ID - GT_2009_13_5_a4 ER -
%0 Journal Article %A Coates, Tom %A Iritani, Hiroshi %A Tseng, Hsian-Hua %T Wall-crossings in toric Gromov–Witten theory I: crepant examples %J Geometry & topology %D 2009 %P 2675-2744 %V 13 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2675/ %R 10.2140/gt.2009.13.2675 %F GT_2009_13_5_a4
Coates, Tom; Iritani, Hiroshi; Tseng, Hsian-Hua. Wall-crossings in toric Gromov–Witten theory I: crepant examples. Geometry & topology, Tome 13 (2009) no. 5, pp. 2675-2744. doi : 10.2140/gt.2009.13.2675. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2675/
[1] Algebraic orbifold quantum products, from: "Orbifolds in mathematics and physics (Madison, WI, 2001)" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 1
, , ,[2] Gromov–Witten theory of Deligne–Mumford stacks, Amer. J. Math. 130 (2008) 1337
, , ,[3] Topological strings and (almost) modular forms, Comm. Math. Phys. 277 (2008) 771
, , ,[4] Torus actions on symplectic manifolds, Progress in Math. 93, Birkhäuser Verlag (2004)
,[5] Semi-infinite Hodge structures and mirror symmetry for projective spaces
,[6] Quantum periods. I. Semi-infinite variations of Hodge structures, Internat. Math. Res. Notices (2001) 1243
,[7] Mellin–Barnes integrals as Fourier–Mukai transforms, Adv. Math. 207 (2006) 876
, ,[8] The crepant resolution conjecture, from: "Algebraic geometry—Seattle 2005. Part 1" (editors D Abramovich, A Bertram, L Katzarkov, R Pandharipande, M Thaddeus), Proc. Sympos. Pure Math. 80, Amer. Math. Soc. (2009) 23
, ,[9] A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory, Nuclear Phys. B 359 (1991) 21
, , , ,[10] On classification of $N=2$ supersymmetric theories, Comm. Math. Phys. 158 (1993) 569
, ,[11] Orbifold Gromov–Witten theory, from: "Orbifolds in mathematics and physics (Madison, WI, 2001)" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 25
, ,[12] A new cohomology theory of orbifold, Comm. Math. Phys. 248 (2004) 1
, ,[13] On the crepant resolution conjecture in the local case, Comm. Math. Phys. 287 (2009) 1071
,[14] Computing genus-zero twisted Gromov–Witten invariants, Duke Math. J. 147 (2009) 377
, , , ,[15] The quantum orbifold cohomology of weighted projective spaces, Acta Math. 202 (2009) 139
, , , ,[16] Quantum Riemann–Roch, Lefschetz and Serre, Ann. of Math. $(2)$ 165 (2007) 15
, ,[17] Quantum cohomology and crepant resolutions: A conjecture
, ,[18] Mirror symmetry and algebraic geometry, Math. Surveys and Monogr. 68, Amer. Math. Soc. (1999)
, ,[19] Gauss–Manin systems, Brieskorn lattices and Frobenius structures. I, from: "Proceedings of the International Conference in Honor of Frédéric Pham (Nice, 2002)", Ann. Inst. Fourier (Grenoble) 53 (2003) 1055
, ,[20] Geometry and integrability of topological-antitopological fusion, Comm. Math. Phys. 152 (1993) 539
,[21] Geometry of $2$D topological field theories, from: "Integrable systems and quantum groups (Montecatini Terme, 1993)" (editors M Francaviglia, S Greco), Lecture Notes in Math. 1620, Springer (1996) 120
,[22] Hodge structures for orbifold cohomology, Proc. Amer. Math. Soc. 134 (2006) 2511
,[23] Notes on stable maps and quantum cohomology, from: "Algebraic geometry—Santa Cruz 1995" (editors J Kollár, R Lazarsfeld, D R Morrison), Proc. Sympos. Pure Math. 62, Amer. Math. Soc. (1997) 45
, ,[24] Homological geometry and mirror symmetry, from: "Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994)", Birkhäuser (1995) 472
,[25] Homological geometry. I. Projective hypersurfaces, Selecta Math. $($N.S.$)$ 1 (1995) 325
,[26] A mirror theorem for toric complete intersections, from: "Topological field theory, primitive forms and related topics (Kyoto, 1996)" (editors M Kashiwara, A Matsuo, K Saito, I Satake), Progr. Math. 160, Birkhäuser (1998) 141
,[27] Gromov–Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001) 551, 645
,[28] Symplectic geometry of Frobenius structures, from: "Frobenius manifolds" (editors C Hertling, M Marcolli), Aspects Math. E36, Vieweg (2004) 91
,[29] Quantum cohomology via $D$–modules, Topology 44 (2005) 263
,[30] $tt^{*}$ geometry, Frobenius manifolds, their connections, and the construction for singularities, J. Reine Angew. Math. 555 (2003) 77
,[31] Weak Frobenius manifolds, Internat. Math. Res. Notices (1999) 277
, ,[32] Unfoldings of meromorphic connections and a construction of Frobenius manifolds, from: "Frobenius manifolds" (editors C Hertling, M Marcolli), Aspects Math. E36, Vieweg (2004) 113
, ,[33] Mirror symmetry, Clay Math. Monogr. 1, Amer. Math. Soc. (2003)
, , , , , , , ,[34] Mirror symmetry
, ,[35] Hypergeometric functions and mirror symmetry in toric varieties
,[36] An integral structure in quantum cohomology and mirror symmetry for toric orbifolds, to appear in Adv. Math
,[37] Ruan's conjecture and integral structures in quantum cohomology
,[38] Wall-crossings in toric Gromov–Witten theory III, in preparation
,[39] Quantum $D$–modules and generalized mirror transformations, Topology 47 (2008) 225
,[40] Gromov–Witten classes, quantum cohomology, and enumerative geometry, Comm. Math. Phys. 164 (1994) 525
, ,[41] Mirror principle. II, Asian J. Math. 3 (1999) 109
, , ,[42] The global McKay–Ruan correspondence via motivic integration, Bull. London Math. Soc. 36 (2004) 509
, ,[43] Frobenius manifolds, quantum cohomology, and moduli spaces, Amer. Math. Soc. Coll. Publ. 47, Amer. Math. Soc. (1999)
,[44] Loop groups, Oxford Math. Monogr., Oxford Science Publ., The Clarendon Press, Oxford Univ. Press (1986)
, ,[45] A reconstruction theorem for genus zero Gromov–Witten invariants of stacks, Amer. J. Math. 130 (2008) 1427
,[46]
, private communication[47] Period mapping associated to a primitive form, Publ. Res. Inst. Math. Sci. 19 (1983) 1231
,[48] On the structure of Brieskorn lattice, Ann. Inst. Fourier (Grenoble) 39 (1989) 27
,[49] Variation of Hodge structure: the singularities of the period mapping, Invent. Math. 22 (1973) 211
,[50]
[51] Twisted jets, motivic measures and orbifold cohomology, Compos. Math. 140 (2004) 396
,Cité par Sources :