Symplectic Floer homology of area-preserving surface diffeomorphisms
Geometry & topology, Tome 13 (2009) no. 5, pp. 2619-2674.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The symplectic Floer homology HF(ϕ) of a symplectomorphism ϕ: Σ Σ encodes data about the fixed points of ϕ using counts of holomorphic cylinders in × Mϕ, where Mϕ is the mapping torus of ϕ. We give an algorithm to compute HF(ϕ) for ϕ a surface symplectomorphism in a pseudo-Anosov or reducible mapping class, completing the computation of Seidel’s HF(h) for h any orientation-preserving mapping class.

DOI : 10.2140/gt.2009.13.2619
Keywords: Floer homology, symplectomorphism, surface diffeomorphism, mapping class group, fixed point, Nielsen class

Cotton-Clay, Andrew 1

1 Department of Mathematics, Harvard University, One Oxford St, Cambridge, MA 01238, USA
@article{GT_2009_13_5_a3,
     author = {Cotton-Clay, Andrew},
     title = {Symplectic {Floer} homology of area-preserving surface diffeomorphisms},
     journal = {Geometry & topology},
     pages = {2619--2674},
     publisher = {mathdoc},
     volume = {13},
     number = {5},
     year = {2009},
     doi = {10.2140/gt.2009.13.2619},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2619/}
}
TY  - JOUR
AU  - Cotton-Clay, Andrew
TI  - Symplectic Floer homology of area-preserving surface diffeomorphisms
JO  - Geometry & topology
PY  - 2009
SP  - 2619
EP  - 2674
VL  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2619/
DO  - 10.2140/gt.2009.13.2619
ID  - GT_2009_13_5_a3
ER  - 
%0 Journal Article
%A Cotton-Clay, Andrew
%T Symplectic Floer homology of area-preserving surface diffeomorphisms
%J Geometry & topology
%D 2009
%P 2619-2674
%V 13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2619/
%R 10.2140/gt.2009.13.2619
%F GT_2009_13_5_a3
Cotton-Clay, Andrew. Symplectic Floer homology of area-preserving surface diffeomorphisms. Geometry & topology, Tome 13 (2009) no. 5, pp. 2619-2674. doi : 10.2140/gt.2009.13.2619. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2619/

[1] M Bestvina, M Handel, Train-tracks for surface homeomorphisms, Topology 34 (1995) 109

[2] J S Birman, M E Kidwell, Fixed points of pseudo-Anosov diffeomorphisms of surfaces, Adv. in Math. 46 (1982) 217

[3] F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799

[4] A J Casson, S A Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London Math. Soc. Student Texts 9, Cambridge Univ. Press (1988)

[5] K Cieliebak, K Mohnke, Compactness for punctured holomorphic curves, J. Symplectic Geom. 3 (2005) 589

[6] V Colin, K Honda, Reeb vector fields and open book decompositions

[7] A Cotton-Clay, A sharp bound on fixed points of area-preserving surface diffeomorphisms, in preparation

[8] S Dostoglou, D A Salamon, Self-dual instantons and holomorphic curves, Ann. of Math. $(2)$ 139 (1994) 581

[9] E Eftekhary, Floer homology of certain pseudo-Anosov maps, J. Symplectic Geom. 2 (2004) 357

[10] Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, GAFA 2000 (Tel Aviv, 1999), Geom. Funct. Anal. (2000) 560

[11] O Fabert, Contact homology of Hamiltonian mapping tori

[12] A Fathi, F Laudenbach, V Poenaru, editors, Travaux de Thurston sur les surfaces, Astérisque 66, Soc. Math. France (1991) 286

[13] A L Fel′Shtyn, Floer homology, Nielsen theory, and symplectic zeta functions, Tr. Mat. Inst. Steklova 246 (2004) 283

[14] A Floer, Morse theory for Lagrangian intersections, J. Differential Geom. 28 (1988) 513

[15] A Floer, Symplectic fixed points and holomorphic spheres, Comm. Math. Phys. 120 (1989) 575

[16] A Floer, H Hofer, D Salamon, Transversality in elliptic Morse theory for the symplectic action, Duke Math. J. 80 (1995) 251

[17] R Gautschi, Floer homology of algebraically finite mapping classes, J. Symplectic Geom. 1 (2003) 715

[18] M Hutchings, An index inequality for embedded pseudoholomorphic curves in symplectizations, J. Eur. Math. Soc. $($JEMS$)$ 4 (2002) 313

[19] M Hutchings, Reidemeister torsion in generalized Morse theory, Forum Math. 14 (2002) 209

[20] M Hutchings, Floer homology of families. I, Algebr. Geom. Topol. 8 (2008) 435

[21] M Hutchings, M Sullivan, The periodic Floer homology of a Dehn twist, Algebr. Geom. Topol. 5 (2005) 301

[22] M Hutchings, M Sullivan, Rounding corners of polygons and the embedded contact homology of $T^3$, Geom. Topol. 10 (2006) 169

[23] S Jabuka, T Mark, Heegaard Floer homology of certain mapping tori, Algebr. Geom. Topol. 4 (2004) 685

[24] B J Jiang, J H Guo, Fixed points of surface diffeomorphisms, Pacific J. Math. 160 (1993) 67

[25] P Kronheimer, T Mrowka, Monopoles and three-manifolds, New Math. Monogr. 10, Cambridge Univ. Press (2007)

[26] E Lebow, Embedded contact homology of $2$–torus bundles over the circle, PhD thesis, University of California, Berkeley (2007)

[27] Y J Lee, Heegaard splittings and Seiberg–Witten monopoles, from: "Geometry and topology of manifolds" (editors U Boden Hans, I Hambleton, A J Nicas, B D Park), Fields Inst. Commun. 47, Amer. Math. Soc. (2005) 173

[28] Y J Lee, Reidemeister torsion in Floer–Novikov theory and counting pseudo-holomorphic tori. I, J. Symplectic Geom. 3 (2005) 221

[29] Y J Lee, Reidemeister torsion in Floer–Novikov theory and counting pseudo-holomorphic tori. II, J. Symplectic Geom. 3 (2005) 385

[30] Y J Lee, C H Taubes, Periodic Floer homology and Seiberg–Witten Floer cohomology

[31] G Liu, G Tian, On the equivalence of multiplicative structures in Floer homology and quantum homology, Acta Math. Sin. $($Engl. Ser.$)$ 15 (1999) 53

[32] D Mcduff, D Salamon, Introduction to symplectic topology, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press (1998)

[33] L Mosher, Train track expansions of measured foliations, Preprint (2003)

[34] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. $(2)$ 159 (2004) 1027

[35] R C Penner, A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc. 310 (1988) 179

[36] R C Penner, J L Harer, Combinatorics of train tracks, Annals of Math. Studies 125, Princeton Univ. Press (1992)

[37] T Perutz, A hypercube for fixed-point Floer homology, Lecture (2008)

[38] T Perutz, Lagrangian matching invariants for fibred four-manifolds. II, Geom. Topol. 12 (2008) 1461

[39] M Pozniak, Floer homology, Novikov rings and clean intersections, PhD thesis, University of Warwick (1994)

[40] J Robbin, D Salamon, The spectral flow and the Maslov index, Bull. London Math. Soc. 27 (1995) 1

[41] D Salamon, E Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math. 45 (1992) 1303

[42] M Schwarz, Cohomology operations from $S^1$–cobordisms in Floer homology, PhD thesis, ETH Zürich (1995)

[43] P Seidel, The symplectic Floer homology of a Dehn twist, Math. Res. Lett. 3 (1996) 829

[44] P Seidel, More about vanishing cycles and mutation, from: "Symplectic geometry and mirror symmetry (Seoul, 2000)" (editors K Fukaya, Y G Oh, K Ono, G Tian), World Sci. Publ. (2001) 429

[45] P Seidel, Symplectic Floer homology and the mapping class group, Pacific J. Math. 206 (2002) 219

[46] C H Taubes, Seiberg Witten and Gromov invariants for symplectic $4$–manifolds, (R Wentworth, editor), First Intl. Press Lecture Ser. 2, Intl. Press (2000)

[47] C H Taubes, The Seiberg–Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007) 2117

[48] C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology I–IV, Preprint (2008)

[49] W P Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. $($N.S.$)$ 19 (1988) 417

[50] M Usher, Vortices and a TQFT for Lefschetz fibrations on $4$–manifolds, Algebr. Geom. Topol. 6 (2006) 1677

[51] M L Yau, A holomorphic $0$–surgery model for open books, Int. Math. Res. Not. (2007)

Cité par Sources :