Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We introduce a new Floer theory associated to a pair consisting of a Cartan hypercontact –manifold and a hyperkähler manifold . The theory is a based on the gradient flow of the hypersymplectic action functional on the space of maps from to . The gradient flow lines satisfy a nonlinear analogue of the Dirac equation. We work out the details of the analysis and compute the Floer homology groups in the case where is flat. As a corollary we derive an existence theorem for the –dimensional perturbed nonlinear Dirac equation.
Hohloch, Sonja 1 ; Noetzel, Gregor 2 ; Salamon, Dietmar A 3
@article{GT_2009_13_5_a2, author = {Hohloch, Sonja and Noetzel, Gregor and Salamon, Dietmar A}, title = {Hypercontact structures and {Floer} homology}, journal = {Geometry & topology}, pages = {2543--2617}, publisher = {mathdoc}, volume = {13}, number = {5}, year = {2009}, doi = {10.2140/gt.2009.13.2543}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2543/} }
TY - JOUR AU - Hohloch, Sonja AU - Noetzel, Gregor AU - Salamon, Dietmar A TI - Hypercontact structures and Floer homology JO - Geometry & topology PY - 2009 SP - 2543 EP - 2617 VL - 13 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2543/ DO - 10.2140/gt.2009.13.2543 ID - GT_2009_13_5_a2 ER -
Hohloch, Sonja; Noetzel, Gregor; Salamon, Dietmar A. Hypercontact structures and Floer homology. Geometry & topology, Tome 13 (2009) no. 5, pp. 2543-2617. doi : 10.2140/gt.2009.13.2543. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2543/
[1] A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl. $(9)$ 36 (1957) 235
,[2] Spectral asymmetry and Riemannian geometry. III, Math. Proc. Cambridge Philos. Soc. 79 (1976) 71
, , ,[3] On the homotopy theory of simply connected four manifolds, Topology 29 (1990) 419
, ,[4] The Birkhoff–Lewis fixed point theorem and a conjecture of V I Arnol$'$d, Invent. Math. 73 (1983) 33
, ,[5] Complex cobordism, Ashtekar's equations and diffeomorphisms, from: "Symplectic geometry" (editor D Salamon), London Math. Soc. Lecture Note Ser. 192, Cambridge Univ. Press (1993) 45
,[6] Floer homology groups in Yang–Mills theory, Cambridge Tracts in Math. 147, Cambridge Univ. Press (2002)
,[7] Gauge theory in higher dimensions, from: "The geometric universe (Oxford, 1996)" (editors S A Huggett, L J Mason, K P Tod, S T Tsou, N M J Woodhouse), Oxford Univ. Press (1998) 31
, ,[8] Self-dual instantons and holomorphic curves, Ann. of Math. $(2)$ 139 (1994) 581
, ,[9] An instanton-invariant for $3$–manifolds, Comm. Math. Phys. 118 (1988) 215
,[10] The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math. 41 (1988) 775
,[11] Symplectic fixed points and holomorphic spheres, Comm. Math. Phys. 120 (1989) 575
,[12] Transversality in elliptic Morse theory for the symplectic action, Duke Math. J. 80 (1995) 251
, , ,[13] Contact geometry and complex surfaces, Invent. Math. 121 (1995) 147
, ,[14] Contact spheres and hyperkähler geometry, Comm. Math. Phys. 287 (2009) 719
, ,[15] Hypercontact manifolds, J. London Math. Soc. $(2)$ 51 (1995) 342
, ,[16] Elliptic partial differential equations of second order, Grund. der Math. Wissenschaften 224, Springer (1983)
, ,[17] Partial differential relations, Ergebnisse der Math. und ihrer Grenzgebiete (3) 9, Springer (1986)
,[18] Generalized Seiberg–Witten equations and hyperkähler geometry, PhD thesis, Universtät Göttingen (2006)
,[19] Nonlinear Dirac operator and quaternionic analysis, Comm. Math. Phys. 281 (2008) 251
,[20] The construction of ALE spaces as hyper-Kähler quotients, J. Differential Geom. 29 (1989) 665
,[21] A Torelli-type theorem for gravitational instantons, J. Differential Geom. 29 (1989) 685
,[22] $J$–holomorphic curves and symplectic topology, Amer. Math. Soc. Coll. Publ. 52, Amer. Math. Soc. (2004)
, ,[23] Lectures on Seiberg–Witten invariants, Lecture Notes in Math. 1629, Springer (2001)
,[24] Symplectic Floer–Donaldson theory and quantum cohomology, from: "Contact and symplectic geometry (Cambridge, 1994)" (editor C B Thomas), Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 171
, , ,[25] The spectral flow and the Maslov index, Bull. London Math. Soc. 27 (1995) 1
, ,[26] Asymptotic behaviour of holomorphic strips, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001) 573
, ,[27] Lectures on Floer homology, from: "Symplectic geometry and topology (Park City, UT, 1997)" (editors Y Eliashberg, L Traynor), IAS/Park City Math. Ser. 7, Amer. Math. Soc. (1999) 143
,[28] Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math. 45 (1992) 1303
, ,[29] Nonlinear generalizations of a $3$–manifold's Dirac operator, from: "Trends in mathematical physics (Knoxville, TN, 1998)" (editors V Alexiades, G Siopsis), AMS/IP Stud. Adv. Math. 13, Amer. Math. Soc. (1999) 475
,[30] Energy quantization and mean value inequalities for nonlinear boundary value problems, J. Eur. Math. Soc. $($JEMS$)$ 7 (2005) 305
,Cité par Sources :