Hypercontact structures and Floer homology
Geometry & topology, Tome 13 (2009) no. 5, pp. 2543-2617.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We introduce a new Floer theory associated to a pair consisting of a Cartan hypercontact 3–manifold M and a hyperkähler manifold X. The theory is a based on the gradient flow of the hypersymplectic action functional on the space of maps from M to X. The gradient flow lines satisfy a nonlinear analogue of the Dirac equation. We work out the details of the analysis and compute the Floer homology groups in the case where X is flat. As a corollary we derive an existence theorem for the 3–dimensional perturbed nonlinear Dirac equation.

DOI : 10.2140/gt.2009.13.2543
Keywords: Floer homology, hyperkaehler, hypercontact

Hohloch, Sonja 1 ; Noetzel, Gregor 2 ; Salamon, Dietmar A 3

1 School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel
2 Mathematisches Institut, Universität Leipzig, Johannisgasse 26, 04103 Leipzig, Germany
3 Departement Mathematik, ETH Zentrum, Rämistrasse 101, CH-8092 Zürich, Switzerland
@article{GT_2009_13_5_a2,
     author = {Hohloch, Sonja and Noetzel, Gregor and Salamon, Dietmar A},
     title = {Hypercontact structures and {Floer} homology},
     journal = {Geometry & topology},
     pages = {2543--2617},
     publisher = {mathdoc},
     volume = {13},
     number = {5},
     year = {2009},
     doi = {10.2140/gt.2009.13.2543},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2543/}
}
TY  - JOUR
AU  - Hohloch, Sonja
AU  - Noetzel, Gregor
AU  - Salamon, Dietmar A
TI  - Hypercontact structures and Floer homology
JO  - Geometry & topology
PY  - 2009
SP  - 2543
EP  - 2617
VL  - 13
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2543/
DO  - 10.2140/gt.2009.13.2543
ID  - GT_2009_13_5_a2
ER  - 
%0 Journal Article
%A Hohloch, Sonja
%A Noetzel, Gregor
%A Salamon, Dietmar A
%T Hypercontact structures and Floer homology
%J Geometry & topology
%D 2009
%P 2543-2617
%V 13
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2543/
%R 10.2140/gt.2009.13.2543
%F GT_2009_13_5_a2
Hohloch, Sonja; Noetzel, Gregor; Salamon, Dietmar A. Hypercontact structures and Floer homology. Geometry & topology, Tome 13 (2009) no. 5, pp. 2543-2617. doi : 10.2140/gt.2009.13.2543. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2543/

[1] N Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pures Appl. $(9)$ 36 (1957) 235

[2] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry. III, Math. Proc. Cambridge Philos. Soc. 79 (1976) 71

[3] T D Cochran, N Habegger, On the homotopy theory of simply connected four manifolds, Topology 29 (1990) 419

[4] C C Conley, E Zehnder, The Birkhoff–Lewis fixed point theorem and a conjecture of V I Arnol$'$d, Invent. Math. 73 (1983) 33

[5] S K Donaldson, Complex cobordism, Ashtekar's equations and diffeomorphisms, from: "Symplectic geometry" (editor D Salamon), London Math. Soc. Lecture Note Ser. 192, Cambridge Univ. Press (1993) 45

[6] S K Donaldson, Floer homology groups in Yang–Mills theory, Cambridge Tracts in Math. 147, Cambridge Univ. Press (2002)

[7] S K Donaldson, R P Thomas, Gauge theory in higher dimensions, from: "The geometric universe (Oxford, 1996)" (editors S A Huggett, L J Mason, K P Tod, S T Tsou, N M J Woodhouse), Oxford Univ. Press (1998) 31

[8] S Dostoglou, D A Salamon, Self-dual instantons and holomorphic curves, Ann. of Math. $(2)$ 139 (1994) 581

[9] A Floer, An instanton-invariant for $3$–manifolds, Comm. Math. Phys. 118 (1988) 215

[10] A Floer, The unregularized gradient flow of the symplectic action, Comm. Pure Appl. Math. 41 (1988) 775

[11] A Floer, Symplectic fixed points and holomorphic spheres, Comm. Math. Phys. 120 (1989) 575

[12] A Floer, H Hofer, D Salamon, Transversality in elliptic Morse theory for the symplectic action, Duke Math. J. 80 (1995) 251

[13] H Geiges, J Gonzalo, Contact geometry and complex surfaces, Invent. Math. 121 (1995) 147

[14] H Geiges, J Gonzalo Pérez, Contact spheres and hyperkähler geometry, Comm. Math. Phys. 287 (2009) 719

[15] H Geiges, C B Thomas, Hypercontact manifolds, J. London Math. Soc. $(2)$ 51 (1995) 342

[16] D Gilbarg, N S Trudinger, Elliptic partial differential equations of second order, Grund. der Math. Wissenschaften 224, Springer (1983)

[17] M Gromov, Partial differential relations, Ergebnisse der Math. und ihrer Grenzgebiete (3) 9, Springer (1986)

[18] A Haydys, Generalized Seiberg–Witten equations and hyperkähler geometry, PhD thesis, Universtät Göttingen (2006)

[19] A Haydys, Nonlinear Dirac operator and quaternionic analysis, Comm. Math. Phys. 281 (2008) 251

[20] P B Kronheimer, The construction of ALE spaces as hyper-Kähler quotients, J. Differential Geom. 29 (1989) 665

[21] P B Kronheimer, A Torelli-type theorem for gravitational instantons, J. Differential Geom. 29 (1989) 685

[22] D Mcduff, D A Salamon, $J$–holomorphic curves and symplectic topology, Amer. Math. Soc. Coll. Publ. 52, Amer. Math. Soc. (2004)

[23] J D Moore, Lectures on Seiberg–Witten invariants, Lecture Notes in Math. 1629, Springer (2001)

[24] S Piunikhin, D A Salamon, M Schwarz, Symplectic Floer–Donaldson theory and quantum cohomology, from: "Contact and symplectic geometry (Cambridge, 1994)" (editor C B Thomas), Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 171

[25] J W Robbin, D A Salamon, The spectral flow and the Maslov index, Bull. London Math. Soc. 27 (1995) 1

[26] J W Robbin, D A Salamon, Asymptotic behaviour of holomorphic strips, Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001) 573

[27] D A Salamon, Lectures on Floer homology, from: "Symplectic geometry and topology (Park City, UT, 1997)" (editors Y Eliashberg, L Traynor), IAS/Park City Math. Ser. 7, Amer. Math. Soc. (1999) 143

[28] D A Salamon, E Zehnder, Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math. 45 (1992) 1303

[29] C H Taubes, Nonlinear generalizations of a $3$–manifold's Dirac operator, from: "Trends in mathematical physics (Knoxville, TN, 1998)" (editors V Alexiades, G Siopsis), AMS/IP Stud. Adv. Math. 13, Amer. Math. Soc. (1999) 475

[30] K Wehrheim, Energy quantization and mean value inequalities for nonlinear boundary value problems, J. Eur. Math. Soc. $($JEMS$)$ 7 (2005) 305

Cité par Sources :