Fundamental groups of moduli stacks of stable curves of compact type
Geometry & topology, Tome 13 (2009) no. 1, pp. 247-276.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let ˜g,n, for 2g 2 + n > 0, be the moduli stack of n–pointed, genus g, stable complex curves of compact type. Various characterizations and properties are obtained of both the topological and algebraic fundamental groups of the stack ˜g,n. For instance we show that the topological fundamental groups are linear, extending to all n 0 previous results of Morita and Hain for g 2 and n = 0,1.

Let Γg,n, for 2g 2 + n > 0, be the Teichmüller group associated with a compact Riemann surface of genus g with n points removed Sg,n, ie the group of homotopy classes of diffeomorphisms of Sg,n which preserve the orientation of Sg,n and a given order of its punctures. Let Kg,n be the normal subgroup of Γg,n generated by Dehn twists along separating simple closed curves (briefly s.c.c.) on Sg,n. The above theory yields a characterization of Kg,n for all n 0, improving Johnson’s classical results for closed and one-punctured surfaces in [Topology 24 (1985) 113-126].

The Torelli group Tg,n is the kernel of the natural representation Γg,n Sp2g(). The abelianization of the Torelli group Tg,n is determined for all g 1 and n 1, thus completing classical results of Johnson [Topology 24 (1985) 127-144] and Mess [Topology 31 (1992) 775-790] for closed and one-punctured surfaces.

We also prove that a connected finite étale cover ˜λ of ˜g,n, for g 2, has a Deligne–Mumford compactification ¯λ with finite fundamental group. This implies that, for g 3, any finite index subgroup of Γg containing Kg has vanishing first cohomology group, improving a result of Hain [Math. Sci. Res. Inst. Publ. 28 (1995) 97-143].

DOI : 10.2140/gt.2009.13.247
Keywords: Teichmüller group, Torelli group

Boggi, Marco 1

1 Escuela de Matemática, Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, San Pedro de Montes de Oca, Apartado 2060, San José, Costa Rica
@article{GT_2009_13_1_a6,
     author = {Boggi, Marco},
     title = {Fundamental groups of moduli stacks of stable curves of compact type},
     journal = {Geometry & topology},
     pages = {247--276},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2009},
     doi = {10.2140/gt.2009.13.247},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.247/}
}
TY  - JOUR
AU  - Boggi, Marco
TI  - Fundamental groups of moduli stacks of stable curves of compact type
JO  - Geometry & topology
PY  - 2009
SP  - 247
EP  - 276
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.247/
DO  - 10.2140/gt.2009.13.247
ID  - GT_2009_13_1_a6
ER  - 
%0 Journal Article
%A Boggi, Marco
%T Fundamental groups of moduli stacks of stable curves of compact type
%J Geometry & topology
%D 2009
%P 247-276
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.247/
%R 10.2140/gt.2009.13.247
%F GT_2009_13_1_a6
Boggi, Marco. Fundamental groups of moduli stacks of stable curves of compact type. Geometry & topology, Tome 13 (2009) no. 1, pp. 247-276. doi : 10.2140/gt.2009.13.247. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.247/

[1] E Arbarello, M Cornalba, Combinatorial and algebro-geometric cohomology classes on the moduli spaces of curves, J. Algebraic Geom. 5 (1996) 705

[2] H Bass, J Milnor, J P Serre, Solution of the congruence subgroup problem for $\mathrm{SL}_{n} (n\geq 3)$ and $\mathrm{Sp}_{2n} (n\geq 2)$, Inst. Hautes Études Sci. Publ. Math. (1967) 59

[3] J S Birman, On Siegel's modular group, Math. Ann. 191 (1971) 59

[4] M Boggi, Profinite Teichmüller theory, Math. Nachr. 279 (2006) 953

[5] M Boggi, Monodromy of stable curves of compact type: rigidity and extension, Int. Math. Res. Not. IMRN (2007)

[6] M Boggi, M Pikaart, Galois covers of moduli of curves, Compositio Math. 120 (2000) 171

[7] P Deligne, Le lemme de Gabber, Astérisque (1985) 131

[8] R Hain, Torelli groups and geometry of moduli spaces of curves, from: "Current topics in complex algebraic geometry (Berkeley, CA, 1992/93)", Math. Sci. Res. Inst. Publ. 28, Cambridge Univ. Press (1995) 97

[9] R Hain, E Looijenga, Mapping class groups and moduli spaces of curves, from: "Algebraic geometry—Santa Cruz 1995", Proc. Sympos. Pure Math. 62, Amer. Math. Soc. (1997) 97

[10] J L Harer, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. $(2)$ 121 (1985) 215

[11] D Johnson, An abelian quotient of the mapping class group $\cal{I}_{g}$, Math. Ann. 249 (1980) 225

[12] D Johnson, The structure of the Torelli group. I. A finite set of generators for $\cal{I}$, Ann. of Math. $(2)$ 118 (1983) 423

[13] D Johnson, The structure of the Torelli group. II. A characterization of the group generated by twists on bounding curves, Topology 24 (1985) 113

[14] D Johnson, The structure of the Torelli group. III. The abelianization of $\scr T$, Topology 24 (1985) 127

[15] N Kawazumi, S Morita, The primary approximation to the cohomology of the moduli space of curves and cocycles for the Mumford–Morita–Miller classes, University of Tokio pre-print 2001–13 (2001)

[16] F F Knudsen, The projectivity of the moduli space of stable curves. II. The stacks $M_{g,n}$, Math. Scand. 52 (1983) 161

[17] I Madsen, M S Weiss, The stable moduli space of Riemann surfaces: Mumford's conjecture

[18] G Mess, The Torelli groups for genus $2$ and $3$ surfaces, Topology 31 (1992) 775

[19] S Mochizuki, Extending families of curves over log regular schemes, J. Reine Angew. Math. 511 (1999) 43

[20] G Mondello, A remark on the homotopical dimension of some moduli spaces of stable Riemann surfaces, J. Eur. Math. Soc. $($JEMS$)$ 10 (2008) 231

[21] S Morita, The extension of Johnson's homomorphism from the Torelli group to the mapping class group, Invent. Math. 111 (1993) 197

[22] S Morita, A linear representation of the mapping class group of orientable surfaces and characteristic classes of surface bundles, from: "Topology and Teichmüller spaces (Katinkulta, 1995)", World Sci. Publ. (1996) 159

[23] B Noohi, Foundations of topological stacks I

[24] B Noohi, Fundamental groups of algebraic stacks, J. Inst. Math. Jussieu 3 (2004) 69

[25] M Pikaart, Moduli spaces of curves: stable cohomology and Galois covers, PhD thesis, Utrecht University (1997)

[26] M Pikaart, A J De Jong, Moduli of curves with non-abelian level structure, from: "The moduli space of curves (Texel Island, 1994)", Progr. Math. 129, Birkhäuser (1995) 483

[27] L Ribes, P Zalesskii, Profinite groups, Ergebnisse der Math. und ihrer Grenzgebiete. 3. Folge. [Results in Math. and Related Areas. 3rd Series.] A Series of Modern Surveys in Math. 40, Springer (2000)

Cité par Sources :