Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We introduce the notion of a polynomial stability condition, generalizing Bridgeland stability conditions on triangulated categories. We construct and study a family of polynomial stability conditions for any normal projective variety. This family includes both Simpson-stability and large volume limits of Bridgeland stability conditions.
We show that the PT/DT–correspondence relating stable pairs to Donaldson–Thomas invariants (conjectured by Pandharipande and Thomas) can be understood as a wall-crossing in our family of polynomial stability conditions. Similarly, we show that the relation between stable pairs and invariants of one-dimensional torsion sheaves (proven recently by the same authors) is a wall-crossing formula.
Bayer, Arend 1
@article{GT_2009_13_4_a11, author = {Bayer, Arend}, title = {Polynomial {Bridgeland} stability conditions and the large volume limit}, journal = {Geometry & topology}, pages = {2389--2425}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2009}, doi = {10.2140/gt.2009.13.2389}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2389/} }
TY - JOUR AU - Bayer, Arend TI - Polynomial Bridgeland stability conditions and the large volume limit JO - Geometry & topology PY - 2009 SP - 2389 EP - 2425 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2389/ DO - 10.2140/gt.2009.13.2389 ID - GT_2009_13_4_a11 ER -
Bayer, Arend. Polynomial Bridgeland stability conditions and the large volume limit. Geometry & topology, Tome 13 (2009) no. 4, pp. 2389-2425. doi : 10.2140/gt.2009.13.2389. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2389/
[1] Bridgeland-stable moduli spaces for K-trivial surfaces
, , ,[2] A point's point of view of stringy geometry, J. High Energy Phys. 1 (2003)
,[3] D-brane stability and monodromy, J. High Energy Phys. 5 (2002)
, ,[4] Derived categories and zero-brane stability, J. High Energy Phys. 8 (2001)
, ,[5] Donaldson–Thomas invariants via microlocal geometry, to appear in Ann. of Math. $(2)$
,[6] Perverse coherent sheaves (after Deligne)
,[7] Reconstruction of a variety from the derived category and groups of autoequivalences, Compositio Math. 125 (2001) 327
, ,[8] Stability conditions on a non-compact Calabi–Yau threefold, Comm. Math. Phys. 266 (2006) 715
,[9] Stability conditions on triangulated categories, Ann. of Math. $(2)$ 166 (2007) 317
,[10] Stability conditions on $K3$ surfaces, Duke Math. J. 141 (2008) 241
,[11] Derived categories of irreducible projective curves of arithmetic genus one, Compos. Math. 142 (2006) 1231
, ,[12] Flops of $G$–Hilb and equivalences of derived categories by variation of GIT quotient, Duke Math. J. 124 (2004) 259
, ,[13] Dirichlet branes, homological mirror symmetry, and stability, from: "Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002)", Higher Ed. Press (2002) 395
,[14] $t$–stabilities and $t$–structures on triangulated categories, Izv. Ross. Akad. Nauk Ser. Mat. 68 (2004) 117
, , ,[15] Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996)
, , ,[16] Fourier–Mukai transforms in algebraic geometry, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press (2006)
,[17] Stability conditions for generic $K3$ categories, Compos. Math. 144 (2008) 134
, , ,[18] Toward a definition of moduli of complexes of coherent sheaves on a projective scheme, J. Math. Kyoto Univ. 42 (2002) 317
,[19] Configurations in abelian categories. IV. Invariants and changing stability conditions, Adv. Math. 217 (2008) 125
,[20] $t$–structures on the derived categories of holonomic $\mathcal D$–modules and coherent $\mathcal O$–modules, Mosc. Math. J. 4 (2004) 847, 981
,[21] Projectivity of complete moduli, J. Differential Geom. 32 (1990) 235
,[22] Faisceaux semi-stables et systèmes cohérents, from: "Vector bundles in algebraic geometry (Durham, 1993)" (editors N J Hitchin, P E Newstead, W M Oxbury), London Math. Soc. Lecture Note Ser. 208, Cambridge Univ. Press (1995) 179
,[23] Moduli of complexes on a proper morphism, J. Algebraic Geom. 15 (2006) 175
,[24] Some examples of moduli spaces of stability conditions on derived categories
,[25] Stability conditions on curves, Math. Res. Lett. 14 (2007) 657
,[26] Inducing stability conditions
, , ,[27] Gromov–Witten theory and Donaldson–Thomas theory. I, Compos. Math. 142 (2006) 1263
, , , ,[28] Stability conditions on generic complex tori
,[29] Stability manifold of $\mathbb{P}^1$, J. Algebraic Geom. 15 (2006) 487
,[30] Curve counting via stable pairs in the derived category
, ,[31] Stable pairs and BPS invariants
, ,[32] Constant families of $t$–structures on derived categories of coherent sheaves, Mosc. Math. J. 7 (2007) 109
,[33] Stability for an abelian category, J. Algebra 197 (1997) 231
,[34] Limit stable objects on Calabi–Yau $3$–folds
,[35] Moduli stacks and invariants of semistable objects on K3 surfaces
,[36] Birational Calabi–Yau threefolds and BPS state counting, Commun. Number Theory Phys. 2 (2008) 63
,[37] Stability conditions and crepant small resolutions, Trans. Amer. Math. Soc. 360 (2008) 6149
,Cité par Sources :