Polynomial Bridgeland stability conditions and the large volume limit
Geometry & topology, Tome 13 (2009) no. 4, pp. 2389-2425.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We introduce the notion of a polynomial stability condition, generalizing Bridgeland stability conditions on triangulated categories. We construct and study a family of polynomial stability conditions for any normal projective variety. This family includes both Simpson-stability and large volume limits of Bridgeland stability conditions.

We show that the PT/DT–correspondence relating stable pairs to Donaldson–Thomas invariants (conjectured by Pandharipande and Thomas) can be understood as a wall-crossing in our family of polynomial stability conditions. Similarly, we show that the relation between stable pairs and invariants of one-dimensional torsion sheaves (proven recently by the same authors) is a wall-crossing formula.

DOI : 10.2140/gt.2009.13.2389
Keywords: stability condition, derived category, counting invariant, wall crossing, Donaldson–Thomas invariant

Bayer, Arend 1

1 Department of Mathematics, University of Utah, 155 South 1400 East, Room 233, Salt Lake City, UT 84112
@article{GT_2009_13_4_a11,
     author = {Bayer, Arend},
     title = {Polynomial {Bridgeland} stability conditions and the large volume limit},
     journal = {Geometry & topology},
     pages = {2389--2425},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2009},
     doi = {10.2140/gt.2009.13.2389},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2389/}
}
TY  - JOUR
AU  - Bayer, Arend
TI  - Polynomial Bridgeland stability conditions and the large volume limit
JO  - Geometry & topology
PY  - 2009
SP  - 2389
EP  - 2425
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2389/
DO  - 10.2140/gt.2009.13.2389
ID  - GT_2009_13_4_a11
ER  - 
%0 Journal Article
%A Bayer, Arend
%T Polynomial Bridgeland stability conditions and the large volume limit
%J Geometry & topology
%D 2009
%P 2389-2425
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2389/
%R 10.2140/gt.2009.13.2389
%F GT_2009_13_4_a11
Bayer, Arend. Polynomial Bridgeland stability conditions and the large volume limit. Geometry & topology, Tome 13 (2009) no. 4, pp. 2389-2425. doi : 10.2140/gt.2009.13.2389. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2389/

[1] D Arcara, A Bertram, M Lieblich, Bridgeland-stable moduli spaces for K-trivial surfaces

[2] P S Aspinwall, A point's point of view of stringy geometry, J. High Energy Phys. 1 (2003)

[3] P S Aspinwall, M R Douglas, D-brane stability and monodromy, J. High Energy Phys. 5 (2002)

[4] P S Aspinwall, A Lawrence, Derived categories and zero-brane stability, J. High Energy Phys. 8 (2001)

[5] K Behrend, Donaldson–Thomas invariants via microlocal geometry, to appear in Ann. of Math. $(2)$

[6] R Bezrukavnikov, Perverse coherent sheaves (after Deligne)

[7] A Bondal, D Orlov, Reconstruction of a variety from the derived category and groups of autoequivalences, Compositio Math. 125 (2001) 327

[8] T Bridgeland, Stability conditions on a non-compact Calabi–Yau threefold, Comm. Math. Phys. 266 (2006) 715

[9] T Bridgeland, Stability conditions on triangulated categories, Ann. of Math. $(2)$ 166 (2007) 317

[10] T Bridgeland, Stability conditions on $K3$ surfaces, Duke Math. J. 141 (2008) 241

[11] I Burban, B Kreußler, Derived categories of irreducible projective curves of arithmetic genus one, Compos. Math. 142 (2006) 1231

[12] A Craw, A Ishii, Flops of $G$–Hilb and equivalences of derived categories by variation of GIT quotient, Duke Math. J. 124 (2004) 259

[13] M R Douglas, Dirichlet branes, homological mirror symmetry, and stability, from: "Proceedings of the International Congress of Mathematicians, Vol. III (Beijing, 2002)", Higher Ed. Press (2002) 395

[14] A L Gorodentsev, S A Kuleshov, A N Rudakov, $t$–stabilities and $t$–structures on triangulated categories, Izv. Ross. Akad. Nauk Ser. Mat. 68 (2004) 117

[15] D Happel, I Reiten, S O Smalø, Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc. 120 (1996)

[16] D Huybrechts, Fourier–Mukai transforms in algebraic geometry, Oxford Math. Monogr., The Clarendon Press, Oxford Univ. Press (2006)

[17] D Huybrechts, E Macrì, P Stellari, Stability conditions for generic $K3$ categories, Compos. Math. 144 (2008) 134

[18] M A Inaba, Toward a definition of moduli of complexes of coherent sheaves on a projective scheme, J. Math. Kyoto Univ. 42 (2002) 317

[19] D Joyce, Configurations in abelian categories. IV. Invariants and changing stability conditions, Adv. Math. 217 (2008) 125

[20] M Kashiwara, $t$–structures on the derived categories of holonomic $\mathcal D$–modules and coherent $\mathcal O$–modules, Mosc. Math. J. 4 (2004) 847, 981

[21] J Kollár, Projectivity of complete moduli, J. Differential Geom. 32 (1990) 235

[22] J Le Potier, Faisceaux semi-stables et systèmes cohérents, from: "Vector bundles in algebraic geometry (Durham, 1993)" (editors N J Hitchin, P E Newstead, W M Oxbury), London Math. Soc. Lecture Note Ser. 208, Cambridge Univ. Press (1995) 179

[23] M Lieblich, Moduli of complexes on a proper morphism, J. Algebraic Geom. 15 (2006) 175

[24] E Macrì, Some examples of moduli spaces of stability conditions on derived categories

[25] E Macrì, Stability conditions on curves, Math. Res. Lett. 14 (2007) 657

[26] E Macrì, S Mehrotra, P Stellari, Inducing stability conditions

[27] D Maulik, N Nekrasov, A Okounkov, R Pandharipande, Gromov–Witten theory and Donaldson–Thomas theory. I, Compos. Math. 142 (2006) 1263

[28] S Meinhardt, Stability conditions on generic complex tori

[29] S Okada, Stability manifold of $\mathbb{P}^1$, J. Algebraic Geom. 15 (2006) 487

[30] R Pandharipande, R Thomas, Curve counting via stable pairs in the derived category

[31] R Pandharipande, R Thomas, Stable pairs and BPS invariants

[32] A Polishchuk, Constant families of $t$–structures on derived categories of coherent sheaves, Mosc. Math. J. 7 (2007) 109

[33] A Rudakov, Stability for an abelian category, J. Algebra 197 (1997) 231

[34] Y Toda, Limit stable objects on Calabi–Yau $3$–folds

[35] Y Toda, Moduli stacks and invariants of semistable objects on K3 surfaces

[36] Y Toda, Birational Calabi–Yau threefolds and BPS state counting, Commun. Number Theory Phys. 2 (2008) 63

[37] Y Toda, Stability conditions and crepant small resolutions, Trans. Amer. Math. Soc. 360 (2008) 6149

Cité par Sources :