Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
This is the third in a series of papers devoted to a general Fredholm theory in a new class of spaces, called polyfolds. We first introduce ep–groupoids and polyfolds. Then we generalize the Fredholm theory, which for M–polyfolds has been presented in our paper [Geom. Funct. Anal. 18 (2009)], to the more general polyfold setting. The Fredholm theory consists of a transversality and a perturbation theory. The results form the basis for our application to Symplectic Field Theory.
Hofer, Helmut 1 ; Wysocki, Kris 2 ; Zehnder, Eduard 3
@article{GT_2009_13_4_a10, author = {Hofer, Helmut and Wysocki, Kris and Zehnder, Eduard}, title = {A general {Fredholm} theory {III:} {Fredholm} functors and polyfolds}, journal = {Geometry & topology}, pages = {2279--2387}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2009}, doi = {10.2140/gt.2009.13.2279}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2279/} }
TY - JOUR AU - Hofer, Helmut AU - Wysocki, Kris AU - Zehnder, Eduard TI - A general Fredholm theory III: Fredholm functors and polyfolds JO - Geometry & topology PY - 2009 SP - 2279 EP - 2387 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2279/ DO - 10.2140/gt.2009.13.2279 ID - GT_2009_13_4_a10 ER -
%0 Journal Article %A Hofer, Helmut %A Wysocki, Kris %A Zehnder, Eduard %T A general Fredholm theory III: Fredholm functors and polyfolds %J Geometry & topology %D 2009 %P 2279-2387 %V 13 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2279/ %R 10.2140/gt.2009.13.2279 %F GT_2009_13_4_a10
Hofer, Helmut; Wysocki, Kris; Zehnder, Eduard. A general Fredholm theory III: Fredholm functors and polyfolds. Geometry & topology, Tome 13 (2009) no. 4, pp. 2279-2387. doi : 10.2140/gt.2009.13.2279. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2279/
[1] Symplectic hypersurfaces and transversality in Gromov-Witten theory, J. Symplectic Geom. 5 (2007) 281
, ,[2] Equivariant moduli problems, branched manifolds, and the Euler class, Topology 42 (2003) 641
, , ,[3] Symplectic submanifolds and almost-complex geometry, J. Differential Geom. 44 (1996) 666
,[4] The geometry of four-manifolds, Oxford Math. Monogr., Oxford Science Publ., The Clarendon Press, Oxford Univ. Press (1990)
, ,[5] Partitions of unity for countable covers, Amer. Math. Monthly 104 (1997) 720
,[6] Coherent orientations for periodic orbit problems in symplectic geometry, Math. Z. 212 (1993) 13
, ,[7] Lagrangian intersection Floer theory—anomaly and obstruction, Preprint
, , , ,[8] Arnold conjecture and Gromov–Witten invariant, Topology 38 (1999) 933
, ,[9] Calculus of fractions and homotopy theory, Ergebnisse series 35, Springer (1967)
, ,[10] Structures feuilletées et cohomologie à valeur dans un faisceau de groupoïdes, Comment. Math. Helv. 32 (1958) 248
,[11] Homotopy and integrability, from: "Manifolds–Amsterdam 1970 (Proc. Nuffic Summer School)", Lecture Notes in Math. 197, Springer (1971) 133
,[12] Groupoïdes d'holonomie et classifiants, from: "Transversal structure of foliations (Toulouse, 1982)", Astérisque 116 (1984) 70
,[13] Groupoids and foliations, from: "Groupoids in analysis, geometry, and physics (Boulder, CO, 1999)" (editors A Ramsay, J Renault), Contemp. Math. 282, Amer. Math. Soc. (2001) 83
,[14] Lectures on polyfolds and applications I: Basic concepts and illustrations, to appear in Courant Lecture Note.
,[15] Applications of polyfold theory I: The polyfolds of Gromov–Witten theory, in preparation
, , ,[16] Applications of polyfold theory II: The polyfolds of symplectic field theory, in preparation
, , ,[17] Connections and determinant bundles for polyfold Fredholm operators, in preparation
, , ,[18] The Fredholm property of the nonlinear Cauchy–Riemann operator in the polyfold set-up for symplectic field theory, in preparation
, , ,[19] Fredholm theory in polyfolds I: Functional analytic methods, book in preparation
, , ,[20] Integration theory for zero sets of polyfold Fredholm sections, submitted for publication
, , ,[21] A general Fredholm theory. I. A splicing-based differential geometry, J. Eur. Math. Soc. 9 (2007) 841
, , ,[22] A general Fredholm theory II: Implicit function theorems, Geom. Funct. Anal. 18 (2009)
, , ,[23] Virtual moduli cycles and Gromov–Witten invariants of general symplectic manifolds, from: "Topics in symplectic $4$–manifolds (Irvine, CA, 1996)" (editor R Stern), First Int. Press Lect. Ser. I, Int. Press (1998) 47
, ,[24] Constructing virtual Euler cycles and classes, Int. Math. Res. Surv. (2008)
, ,[25] Frobenius manifolds, quantum cohomology, and moduli spaces, Amer. Math. Soc. Coll. Publ. 47, Amer. Math. Soc. (1999)
,[26] Groupoids, branched manifolds and multisections, J. Symplectic Geom. 4 (2006) 259
,[27] $J$–holomorphic curves and symplectic topology, Amer. Math. Soc. Coll. Publ. 52, Amer. Math. Soc. (2004)
, ,[28] Orbifolds as groupoids: an introduction, from: "Orbifolds in mathematics and physics (Madison, WI, 2001)" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 205
,[29] Introduction to foliations and Lie groupoids, Cambridge Studies in Advanced Math. 91, Cambridge Univ. Press (2003)
, ,[30] Symplectic topology on algebraic $3$–folds, J. Differential Geom. 39 (1994) 215
,[31] Topological sigma model and Donaldson-type invariants in Gromov theory, Duke Math. J. 83 (1996) 461
,[32] Quantum cohomology and its associativity, from: "Current developments in mathematics, 1995 (Cambridge, MA)" (editors R Bott, M Hopkins, A Jaffe, I Singer, D Stroock, S Yau), Int. Press (1994) 361
,Cité par Sources :