A general Fredholm theory III: Fredholm functors and polyfolds
Geometry & topology, Tome 13 (2009) no. 4, pp. 2279-2387.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This is the third in a series of papers devoted to a general Fredholm theory in a new class of spaces, called polyfolds. We first introduce ep–groupoids and polyfolds. Then we generalize the Fredholm theory, which for M–polyfolds has been presented in our paper [Geom. Funct. Anal. 18 (2009)], to the more general polyfold setting. The Fredholm theory consists of a transversality and a perturbation theory. The results form the basis for our application to Symplectic Field Theory.

DOI : 10.2140/gt.2009.13.2279
Keywords: ep-groupoid, polyfold, branched suborbifold, strong polyfold bundle, Fredholm section of polyfold bundle

Hofer, Helmut 1 ; Wysocki, Kris 2 ; Zehnder, Eduard 3

1 Courant Institute, New York University, 251 Mercer Street, New York, 10012, USA
2 Mathematics Department, Penn State University, University Park, State College, PA 16802, USA
3 Department of Mathematik, ETH-Zentrum, CH 8092 Zürich, Switzerland
@article{GT_2009_13_4_a10,
     author = {Hofer, Helmut and Wysocki, Kris and Zehnder, Eduard},
     title = {A general {Fredholm} theory {III:} {Fredholm} functors and polyfolds},
     journal = {Geometry & topology},
     pages = {2279--2387},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2009},
     doi = {10.2140/gt.2009.13.2279},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2279/}
}
TY  - JOUR
AU  - Hofer, Helmut
AU  - Wysocki, Kris
AU  - Zehnder, Eduard
TI  - A general Fredholm theory III: Fredholm functors and polyfolds
JO  - Geometry & topology
PY  - 2009
SP  - 2279
EP  - 2387
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2279/
DO  - 10.2140/gt.2009.13.2279
ID  - GT_2009_13_4_a10
ER  - 
%0 Journal Article
%A Hofer, Helmut
%A Wysocki, Kris
%A Zehnder, Eduard
%T A general Fredholm theory III: Fredholm functors and polyfolds
%J Geometry & topology
%D 2009
%P 2279-2387
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2279/
%R 10.2140/gt.2009.13.2279
%F GT_2009_13_4_a10
Hofer, Helmut; Wysocki, Kris; Zehnder, Eduard. A general Fredholm theory III: Fredholm functors and polyfolds. Geometry & topology, Tome 13 (2009) no. 4, pp. 2279-2387. doi : 10.2140/gt.2009.13.2279. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2279/

[1] K Cieliebak, K Mohnke, Symplectic hypersurfaces and transversality in Gromov-Witten theory, J. Symplectic Geom. 5 (2007) 281

[2] K Cieliebak, I Mundet I Riera, D A Salamon, Equivariant moduli problems, branched manifolds, and the Euler class, Topology 42 (2003) 641

[3] S K Donaldson, Symplectic submanifolds and almost-complex geometry, J. Differential Geom. 44 (1996) 666

[4] S K Donaldson, P B Kronheimer, The geometry of four-manifolds, Oxford Math. Monogr., Oxford Science Publ., The Clarendon Press, Oxford Univ. Press (1990)

[5] A Fathi, Partitions of unity for countable covers, Amer. Math. Monthly 104 (1997) 720

[6] A Floer, H Hofer, Coherent orientations for periodic orbit problems in symplectic geometry, Math. Z. 212 (1993) 13

[7] K Fukaya, Y G Oh, H Ohta, K Ono, Lagrangian intersection Floer theory—anomaly and obstruction, Preprint

[8] K Fukaya, K Ono, Arnold conjecture and Gromov–Witten invariant, Topology 38 (1999) 933

[9] P Gabriel, M Zisman, Calculus of fractions and homotopy theory, Ergebnisse series 35, Springer (1967)

[10] A Haefliger, Structures feuilletées et cohomologie à valeur dans un faisceau de groupoïdes, Comment. Math. Helv. 32 (1958) 248

[11] A Haefliger, Homotopy and integrability, from: "Manifolds–Amsterdam 1970 (Proc. Nuffic Summer School)", Lecture Notes in Math. 197, Springer (1971) 133

[12] A Haefliger, Groupoïdes d'holonomie et classifiants, from: "Transversal structure of foliations (Toulouse, 1982)", Astérisque 116 (1984) 70

[13] A Haefliger, Groupoids and foliations, from: "Groupoids in analysis, geometry, and physics (Boulder, CO, 1999)" (editors A Ramsay, J Renault), Contemp. Math. 282, Amer. Math. Soc. (2001) 83

[14] H Hofer, Lectures on polyfolds and applications I: Basic concepts and illustrations, to appear in Courant Lecture Note.

[15] H Hofer, K Wysocki, E Zehnder, Applications of polyfold theory I: The polyfolds of Gromov–Witten theory, in preparation

[16] H Hofer, K Wysocki, E Zehnder, Applications of polyfold theory II: The polyfolds of symplectic field theory, in preparation

[17] H Hofer, K Wysocki, E Zehnder, Connections and determinant bundles for polyfold Fredholm operators, in preparation

[18] H Hofer, K Wysocki, E Zehnder, The Fredholm property of the nonlinear Cauchy–Riemann operator in the polyfold set-up for symplectic field theory, in preparation

[19] H Hofer, K Wysocki, E Zehnder, Fredholm theory in polyfolds I: Functional analytic methods, book in preparation

[20] H Hofer, K Wysocki, E Zehnder, Integration theory for zero sets of polyfold Fredholm sections, submitted for publication

[21] H Hofer, K Wysocki, E Zehnder, A general Fredholm theory. I. A splicing-based differential geometry, J. Eur. Math. Soc. 9 (2007) 841

[22] H Hofer, K Wysocki, E Zehnder, A general Fredholm theory II: Implicit function theorems, Geom. Funct. Anal. 18 (2009)

[23] J Li, G Tian, Virtual moduli cycles and Gromov–Witten invariants of general symplectic manifolds, from: "Topics in symplectic $4$–manifolds (Irvine, CA, 1996)" (editor R Stern), First Int. Press Lect. Ser. I, Int. Press (1998) 47

[24] G Lu, G Tian, Constructing virtual Euler cycles and classes, Int. Math. Res. Surv. (2008)

[25] Y I Manin, Frobenius manifolds, quantum cohomology, and moduli spaces, Amer. Math. Soc. Coll. Publ. 47, Amer. Math. Soc. (1999)

[26] D Mcduff, Groupoids, branched manifolds and multisections, J. Symplectic Geom. 4 (2006) 259

[27] D Mcduff, D Salamon, $J$–holomorphic curves and symplectic topology, Amer. Math. Soc. Coll. Publ. 52, Amer. Math. Soc. (2004)

[28] I Moerdijk, Orbifolds as groupoids: an introduction, from: "Orbifolds in mathematics and physics (Madison, WI, 2001)" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 205

[29] I Moerdijk, J Mrčun, Introduction to foliations and Lie groupoids, Cambridge Studies in Advanced Math. 91, Cambridge Univ. Press (2003)

[30] Y Ruan, Symplectic topology on algebraic $3$–folds, J. Differential Geom. 39 (1994) 215

[31] Y Ruan, Topological sigma model and Donaldson-type invariants in Gromov theory, Duke Math. J. 83 (1996) 461

[32] G Tian, Quantum cohomology and its associativity, from: "Current developments in mathematics, 1995 (Cambridge, MA)" (editors R Bott, M Hopkins, A Jaffe, I Singer, D Stroock, S Yau), Int. Press (1994) 361

Cité par Sources :