The asymptotic behavior of least pseudo-Anosov dilatations
Geometry & topology, Tome 13 (2009) no. 4, pp. 2253-2278.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

For a surface S with n marked points and fixed genus g 2, we prove that the logarithm of the minimal dilatation of a pseudo-Anosov homeomorphism of S is on the order of log(n)n. This is in contrast with the cases of genus zero or one where the order is 1n.

DOI : 10.2140/gt.2009.13.2253
Keywords: pseudo-Anosov dilatation, minimal translation length, mapping class group, Teichmuller space

Tsai, Chia-Yen 1

1 Department of Mathematics, The University of Illinois at Urbana-Champaign, 1409 West Green Street, Urbana, IL 61801, USA
@article{GT_2009_13_4_a9,
     author = {Tsai, Chia-Yen},
     title = {The asymptotic behavior of least {pseudo-Anosov} dilatations},
     journal = {Geometry & topology},
     pages = {2253--2278},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2009},
     doi = {10.2140/gt.2009.13.2253},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2253/}
}
TY  - JOUR
AU  - Tsai, Chia-Yen
TI  - The asymptotic behavior of least pseudo-Anosov dilatations
JO  - Geometry & topology
PY  - 2009
SP  - 2253
EP  - 2278
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2253/
DO  - 10.2140/gt.2009.13.2253
ID  - GT_2009_13_4_a9
ER  - 
%0 Journal Article
%A Tsai, Chia-Yen
%T The asymptotic behavior of least pseudo-Anosov dilatations
%J Geometry & topology
%D 2009
%P 2253-2278
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2253/
%R 10.2140/gt.2009.13.2253
%F GT_2009_13_4_a9
Tsai, Chia-Yen. The asymptotic behavior of least pseudo-Anosov dilatations. Geometry & topology, Tome 13 (2009) no. 4, pp. 2253-2278. doi : 10.2140/gt.2009.13.2253. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2253/

[1] M Bauer, An upper bound for the least dilatation, Trans. Amer. Math. Soc. 330 (1992) 361

[2] M Bestvina, M Handel, Train-tracks for surface homeomorphisms, Topology 34 (1995) 109

[3] R Bott, L W Tu, Differential forms in algebraic topology, Graduate Texts in Math. 82, Springer (1982)

[4] A Fathi, F Laudenbach, V Poenaru, Editors, Travaux de Thurston sur les surfaces, Astérisque 66, Soc. Math. France (1991) 286

[5] F R Gantmacher, The theory of matrices. Vols. 1, 2, Translated by K. A. Hirsch, Chelsea Publ. Co. (1959)

[6] V Guillemin, A Pollack, Differential topology, Prentice-Hall (1974)

[7] E Hironaka, E Kin, A family of pseudo-Anosov braids with small dilatation, Algebr. Geom. Topol. 6 (2006) 699

[8] N V Ivanov, Coefficients of expansion of pseudo-Anosov homeomorphisms, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 167 (1988) 111, 191

[9] N V Ivanov, Subgroups of Teichmüller modular groups, Transl. of Math. Monogr. 115, Amer. Math. Soc. (1992)

[10] C T Mcmullen, Polynomial invariants for fibered $3$–manifolds and Teichmüller geodesics for foliations, Ann. Sci. École Norm. Sup. $(4)$ 33 (2000) 519

[11] H Minakawa, Examples of pseudo-Anosov homeomorphisms with small dilatations, J. Math. Sci. Univ. Tokyo 13 (2006) 95

[12] R C Penner, A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc. 310 (1988) 179

[13] R C Penner, Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991) 443

Cité par Sources :