Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
For a surface with marked points and fixed genus , we prove that the logarithm of the minimal dilatation of a pseudo-Anosov homeomorphism of is on the order of . This is in contrast with the cases of genus zero or one where the order is .
Tsai, Chia-Yen 1
@article{GT_2009_13_4_a9, author = {Tsai, Chia-Yen}, title = {The asymptotic behavior of least {pseudo-Anosov} dilatations}, journal = {Geometry & topology}, pages = {2253--2278}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2009}, doi = {10.2140/gt.2009.13.2253}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2253/} }
Tsai, Chia-Yen. The asymptotic behavior of least pseudo-Anosov dilatations. Geometry & topology, Tome 13 (2009) no. 4, pp. 2253-2278. doi : 10.2140/gt.2009.13.2253. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2253/
[1] An upper bound for the least dilatation, Trans. Amer. Math. Soc. 330 (1992) 361
,[2] Train-tracks for surface homeomorphisms, Topology 34 (1995) 109
, ,[3] Differential forms in algebraic topology, Graduate Texts in Math. 82, Springer (1982)
, ,[4] Travaux de Thurston sur les surfaces, Astérisque 66, Soc. Math. France (1991) 286
, , , ,[5] The theory of matrices. Vols. 1, 2, Translated by K. A. Hirsch, Chelsea Publ. Co. (1959)
,[6] Differential topology, Prentice-Hall (1974)
, ,[7] A family of pseudo-Anosov braids with small dilatation, Algebr. Geom. Topol. 6 (2006) 699
, ,[8] Coefficients of expansion of pseudo-Anosov homeomorphisms, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 167 (1988) 111, 191
,[9] Subgroups of Teichmüller modular groups, Transl. of Math. Monogr. 115, Amer. Math. Soc. (1992)
,[10] Polynomial invariants for fibered $3$–manifolds and Teichmüller geodesics for foliations, Ann. Sci. École Norm. Sup. $(4)$ 33 (2000) 519
,[11] Examples of pseudo-Anosov homeomorphisms with small dilatations, J. Math. Sci. Univ. Tokyo 13 (2006) 95
,[12] A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc. 310 (1988) 179
,[13] Bounds on least dilatations, Proc. Amer. Math. Soc. 113 (1991) 443
,Cité par Sources :