Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that intersection homology extends Poincaré duality to manifold homotopically stratified spaces (satisfying mild restrictions). These spaces were introduced by Quinn to provide “a setting for the study of purely topological stratified phenomena, particularly group actions on manifolds.” The main proof techniques involve blending the global algebraic machinery of sheaf theory with local homotopy computations. In particular, this includes showing that, on such spaces, the sheaf complex of singular intersection chains is quasi-isomorphic to the Deligne sheaf complex.
Friedman, Greg 1
@article{GT_2009_13_4_a7, author = {Friedman, Greg}, title = {Intersection homology and {Poincar\'e} duality on homotopically stratified spaces}, journal = {Geometry & topology}, pages = {2163--2204}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2009}, doi = {10.2140/gt.2009.13.2163}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2163/} }
TY - JOUR AU - Friedman, Greg TI - Intersection homology and Poincaré duality on homotopically stratified spaces JO - Geometry & topology PY - 2009 SP - 2163 EP - 2204 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2163/ DO - 10.2140/gt.2009.13.2163 ID - GT_2009_13_4_a7 ER -
Friedman, Greg. Intersection homology and Poincaré duality on homotopically stratified spaces. Geometry & topology, Tome 13 (2009) no. 4, pp. 2163-2204. doi : 10.2140/gt.2009.13.2163. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2163/
[1] Extending intersection homology type invariants to non-Witt spaces, Mem. Amer. Math. Soc. 160 (2002)
,[2] The $L$–class of non-Witt spaces, Ann. of Math. $(2)$ 163 (2006) 743
,[3] Topological invariants of stratified spaces, Springer Monogr. in Math., Springer (2007)
,[4] Computing twisted signatures and $L$–classes of stratified spaces, Math. Ann. 326 (2003) 589
, , ,[5] Faisceaux pervers, from: "Analysis and topology on singular spaces, I (Luminy, 1981)", Astérisque 100, Soc. Math. France (1982) 5
, , ,[6] $G$–isovariant structure sets and stratified structure sets, PhD thesis, Vanderbilt University (1997)
,[7] Intersection cohomology, Progress in Math. 50, Birkhäuser (1984)
, ,[8] Sheaf theory, Graduate Texts in Math. 170, Springer (1997)
,[9] Equivariant intersection cohomology, from: "Kazhdan–Lusztig theory and related topics (Chicago, IL, 1989)" (editor V Deodhar), Contemp. Math. 139, Amer. Math. Soc. (1992) 5
,[10] Singular spaces, characteristic classes, and intersection homology, Ann. of Math. $(2)$ 134 (1991) 325
, ,[11] Stratifiable maps and topological invariants, J. Amer. Math. Soc. 4 (1991) 521
, ,[12] The mapping cone and cylinder of a stratified map, from: "Prospects in topology (Princeton, NJ, 1994)" (editor F Quinn), Ann. of Math. Stud. 138, Princeton Univ. Press (1995) 58
, ,[13] Classes topologiques caractéristiques pour les actions de groupes sur les espaces singuliers, C. R. Acad. Sci. Paris Sér. I Math. 313 (1991) 293
, , ,[14] Classification de certains espaces stratifiés, C. R. Acad. Sci. Paris Sér. I Math. 313 (1991) 399
, ,[15] Intersection homology and free group actions on Witt spaces, Michigan Math. J. 39 (1992) 111
,[16] Stratified fibrations and the intersection homology of the regular neighborhoods of bottom strata, Topology Appl. 134 (2003) 69
,[17] Intersection homology of regular and cylindrical neighborhoods, Topology Appl. 149 (2005) 97
,[18] Superperverse intersection cohomology: stratification (in)dependence, Math. Z. 252 (2006) 49
,[19] Intersection homology of stratified fibrations and neighborhoods, Adv. Math. 215 (2007) 24
,[20] Singular chain intersection homology for traditional and super-perversities, Trans. Amer. Math. Soc. 359 (2007) 1977
,[21] Intersection homology theory, Topology 19 (1980) 135
, ,[22] Intersection homology. II, Invent. Math. 72 (1983) 77
, ,[23] Linking pairings on singular spaces, Comment. Math. Helv. 58 (1983) 96
, ,[24] Intersection cohomology of cs-spaces and Zeeman's filtration, Invent. Math. 105 (1991) 247
, ,[25] Intersection cohomology of $S^1$–actions, Trans. Amer. Math. Soc. 338 (1993) 263
, ,[26] Stratifications of mapping cylinders, Topology Appl. 94 (1999) 127
,[27] Stratified path spaces and fibrations, Proc. Roy. Soc. Edinburgh Sect. A 129 (1999) 351
,[28] The approximate tubular neighborhood theorem, Ann. of Math. $(2)$ 156 (2002) 867
,[29] Ends of complexes, Cambridge Tracts in Math. 123, Cambridge Univ. Press (1996)
, ,[30] Neighborhoods in stratified spaces with two strata, Topology 39 (2000) 873
, , , ,[31] Surgery and stratified spaces, from: "Surveys on surgery theory, Vol. 2" (editors S Cappell, A Ranicki, J Rosenberg), Ann. of Math. Stud. 149, Princeton Univ. Press (2001) 319
, ,[32] Dimension theory, Princeton Math. Ser. 4, Princeton Univ. Press (1941)
, ,[33] Topological invariance of intersection homology without sheaves, Topology Appl. 20 (1985) 149
,[34] An introduction to intersection homology theory, Pitman Research Notes in Math. Series 187, Longman Scientific Technical (1988)
,[35] The development of intersection homology theory, Pure Appl. Math. Q. 3 (2007) 225
,[36] Intersection cohomology of stratified circle actions, Illinois J. Math. 49 (2005) 659
,[37] Intersection cohomology of the circle actions, Topology Appl. 154 (2007) 2764
, ,[38] Intrinsic skeleta and intersection homology of weakly stratified sets, from: "Geometry and topology (Athens, Ga., 1985)" (editors C McCrory, T Shifrin), Lecture Notes in Pure and Appl. Math. 105, Dekker (1987) 233
,[39] Homotopically stratified sets, J. Amer. Math. Soc. 1 (1988) 441
,[40] Cohomologie d'intersection des actions toriques simples, Indag. Math. $($N.S.$)$ 7 (1996) 389
,[41] de Rham intersection cohomology for general perversities, Illinois J. Math. 49 (2005) 737
,[42] Witt spaces: a geometric cycle theory for $K\mathrm{O}$–homology at odd primes, Amer. J. Math. 105 (1983) 1067
,[43] Group actions and higher signatures. II, Comm. Pure Appl. Math. 40 (1987) 179
,[44] The topological classification of stratified spaces, Chicago Lectures in Math., Univ. of Chicago Press (1994)
,[45] Equivariant periodicity for abelian group actions, Adv. Geom. 1 (2001) 49
, ,[46] Equivariant periodicity for compact group actions, Adv. Geom. 5 (2005) 363
, ,[47] The periodicity in stable equivariant surgery, Comm. Pure Appl. Math. 46 (1993) 1013
,Cité par Sources :