Covers and the curve complex
Geometry & topology, Tome 13 (2009) no. 4, pp. 2141-2162.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We provide the first nontrivial examples of quasi-isometric embeddings between curve complexes; these are induced by orbifold covers. This leads to new quasi-isometric embeddings between mapping class groups. As a corollary, in the mapping class group normalizers of finite subgroups are undistorted.

DOI : 10.2140/gt.2009.13.2141
Keywords: mapping class group, complex of curves, cover, undistorted subgroup

Rafi, Kasra 1 ; Schleimer, Saul 2

1 Department of Mathematics, University of Chicago, 5734 S University Avenue, Chicago, Illinois 60637, USA
2 Mathematics Institute, University of Warwick, Coventry, CV4 7A, UK
@article{GT_2009_13_4_a6,
     author = {Rafi, Kasra and Schleimer, Saul},
     title = {Covers and the curve complex},
     journal = {Geometry & topology},
     pages = {2141--2162},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2009},
     doi = {10.2140/gt.2009.13.2141},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2141/}
}
TY  - JOUR
AU  - Rafi, Kasra
AU  - Schleimer, Saul
TI  - Covers and the curve complex
JO  - Geometry & topology
PY  - 2009
SP  - 2141
EP  - 2162
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2141/
DO  - 10.2140/gt.2009.13.2141
ID  - GT_2009_13_4_a6
ER  - 
%0 Journal Article
%A Rafi, Kasra
%A Schleimer, Saul
%T Covers and the curve complex
%J Geometry & topology
%D 2009
%P 2141-2162
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2141/
%R 10.2140/gt.2009.13.2141
%F GT_2009_13_4_a6
Rafi, Kasra; Schleimer, Saul. Covers and the curve complex. Geometry & topology, Tome 13 (2009) no. 4, pp. 2141-2162. doi : 10.2140/gt.2009.13.2141. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2141/

[1] J Behrstock, B Kleiner, Y N Minsky, L Mosher, Geometry and rigidity of mapping class groups

[2] L Bers, Quasiconformal mappings and Teichmüller's theorem, from: "Analytic functions", Princeton Univ. Press (1960) 89

[3] J S Birman, H M Hilden, On the mapping class groups of closed surfaces as covering spaces, from: "Advances in the theory of Riemann surfaces (Proc. Conf., Stony Brook, N.Y., 1969)", Ann. of Math. Studies 66, Princeton Univ. Press (1971) 81

[4] N Broaddus, B Farb, A Putman, Irreducible Sp–representations and subgroup distortion in the mapping class group

[5] P Buser, Geometry and spectra of compact Riemann surfaces, Progress in Math. 106, Birkhäuser (1992)

[6] F P Gardiner, Teichmüller theory and quadratic differentials, Pure and Applied Math., Wiley-Interscience, John Wiley Sons (1987)

[7] U Hamenstädt, Geometry of the mapping class groups II: (Quasi)-geodesics

[8] U Hamenstädt, Geometry of the mapping class groups III: Quasi-isometric rigidity

[9] J L Harer, The virtual cohomological dimension of the mapping class group of an orientable surface, Invent. Math. 84 (1986) 157

[10] W J Harvey, Boundary structure of the modular group, from: "Riemann surfaces and related topics (Proc. Conf., Stony Brook, N.Y., 1978)" (editors I Kra, B Maskit), Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 245

[11] J Hempel, $3$–manifolds as viewed from the curve complex, Topology 40 (2001) 631

[12] S P Kerckhoff, The Nielsen realization problem, Ann. of Math. $(2)$ 117 (1983) 235

[13] C Maclachlan, W J Harvey, On mapping-class groups and Teichmüller spaces, Proc. London Math. Soc. $(3)$ 30 (1975) 496

[14] H A Masur, Y N Minsky, Geometry of the complex of curves. I. Hyperbolicity, Invent. Math. 138 (1999) 103

[15] H A Masur, Y N Minsky, Geometry of the complex of curves. II. Hierarchical structure, Geom. Funct. Anal. 10 (2000) 902

[16] H A Masur, S Schleimer, The geometry of the disk complex, Preprint (2007)

[17] Y N Minsky, The classification of punctured-torus groups, Ann. of Math. $(2)$ 149 (1999) 559

[18] L Mosher, Hyperbolic extensions of groups, J. Pure Appl. Algebra 110 (1996) 305

[19] K Rafi, A characterization of short curves of a Teichmüller geodesic, Geom. Topol. 9 (2005) 179

[20] K Rafi, A combinatorial model for the Teichmüller metric, Geom. Funct. Anal. 17 (2007) 936

[21] K Rafi, S Schleimer, Curve complexes with connected boundary are rigid

[22] S Schleimer, Notes on the curve complex

[23] P Scott, The geometries of $3$–manifolds, Bull. London Math. Soc. 15 (1983) 401

Cité par Sources :