Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
For each there is a –manifold with two genus– Heegaard splittings that require stabilizations to become equivalent. Previously known examples required at most one stabilization before becoming equivalent. Control of families of Heegaard surfaces is obtained through a deformation to harmonic maps.
Hass, Joel 1 ; Thompson, Abigail 1 ; Thurston, William 2
@article{GT_2009_13_4_a4, author = {Hass, Joel and Thompson, Abigail and Thurston, William}, title = {Stabilization of {Heegaard} splittings}, journal = {Geometry & topology}, pages = {2029--2050}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2009}, doi = {10.2140/gt.2009.13.2029}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2029/} }
TY - JOUR AU - Hass, Joel AU - Thompson, Abigail AU - Thurston, William TI - Stabilization of Heegaard splittings JO - Geometry & topology PY - 2009 SP - 2029 EP - 2050 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2029/ DO - 10.2140/gt.2009.13.2029 ID - GT_2009_13_4_a4 ER -
Hass, Joel; Thompson, Abigail; Thurston, William. Stabilization of Heegaard splittings. Geometry & topology, Tome 13 (2009) no. 4, pp. 2029-2050. doi : 10.2140/gt.2009.13.2029. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2029/
[1] Large embedded balls and Heegaard genus in negative curvature, Algebr. Geom. Topol. 4 (2004) 31
, , ,[2] Isoperimetric inequalities. Differential geometric and analytic perspectives, Cambridge Tracts in Math. 145, Cambridge Univ. Press (2001)
,[3] A report on harmonic maps, Bull. London Math. Soc. 10 (1978) 1
, ,[4] Deformations of metrics and associated harmonic maps, Proc. Indian Acad. Sci. Math. Sci. 90 (1981) 33
, ,[5] Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964) 109
, ,[6] Geometric measure theory, Grund. der math. Wissenschaften 153, Springer (1969)
,[7] On homotopic harmonic maps, Canad. J. Math. 19 (1967) 673
,[8] The existence of least area surfaces in $3$–manifolds, Trans. Amer. Math. Soc. 310 (1988) 87
, ,[9] Problems in low dimensional manifold theory, from: "Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., 1976), Part 2" (editor R J Milgram), Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc. (1978) 273
,[10] Harmonic maps into hyperbolic $3$–manifolds, Trans. Amer. Math. Soc. 332 (1992) 607
,[11] Geometric topology in dimensions $2$ and $3$, Graduate Texts in Math. 47, Springer (1977)
,[12] Heegaard splittings and pseudo-Anosov maps, preprint
, ,[13] Applications of minimax to minimal surfaces and the topology of $3$–manifolds, from: "Miniconference on geometry and partial differential equations, 2 (Canberra, 1986)" (editors J E Hutchinson, L M Simon), Proc. Centre Math. Anal. Austral. Nat. Univ. 12, Austral. Nat. Univ. (1987) 137
, ,[14] A non-Haken hyperbolic $3$–manifold covered by a surface bundle, Pacific J. Math. 167 (1995) 163
,[15] Comparing Heegaard splittings of non-Haken $3$–manifolds, Topology 35 (1996) 1005
, ,[16] Minimal surfaces in geometric $3$–manifolds, from: "Global theory of minimal surfaces" (editor D Hoffman), Clay Math. Proc. 2, Amer. Math. Soc. (2005) 725
,[17] Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup. $(4)$ 11 (1978) 211
,[18] Heegaard splittings of compact $3$–manifolds, from: "Handbook of geometric topology" (editors R J Daverman, R B Sher), North-Holland (2002) 921
,[19] The stabilization problem for Heegaard splittings of Seifert fibered spaces, Topology Appl. 73 (1996) 133
,[20] An infinite collection of Heegaard splittings that are equivalent after one stabilization, Math. Ann. 308 (1997) 65
,[21] Three-dimensional manifolds and their Heegaard diagrams, Trans. Amer. Math. Soc. 35 (1933) 88
,Cité par Sources :