Stabilization of Heegaard splittings
Geometry & topology, Tome 13 (2009) no. 4, pp. 2029-2050.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

For each g 2 there is a 3–manifold with two genus–g Heegaard splittings that require g stabilizations to become equivalent. Previously known examples required at most one stabilization before becoming equivalent. Control of families of Heegaard surfaces is obtained through a deformation to harmonic maps.

DOI : 10.2140/gt.2009.13.2029
Keywords: harmonic map, Heegaard splitting, stabilization, isoperimetric inequality

Hass, Joel 1 ; Thompson, Abigail 1 ; Thurston, William 2

1 Department of Mathematics, University of California, Davis, California 95616, USA
2 Department of Mathematics, Cornell University, Ithaca, NY 14853, USA
@article{GT_2009_13_4_a4,
     author = {Hass, Joel and Thompson, Abigail and Thurston, William},
     title = {Stabilization of {Heegaard} splittings},
     journal = {Geometry & topology},
     pages = {2029--2050},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2009},
     doi = {10.2140/gt.2009.13.2029},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2029/}
}
TY  - JOUR
AU  - Hass, Joel
AU  - Thompson, Abigail
AU  - Thurston, William
TI  - Stabilization of Heegaard splittings
JO  - Geometry & topology
PY  - 2009
SP  - 2029
EP  - 2050
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2029/
DO  - 10.2140/gt.2009.13.2029
ID  - GT_2009_13_4_a4
ER  - 
%0 Journal Article
%A Hass, Joel
%A Thompson, Abigail
%A Thurston, William
%T Stabilization of Heegaard splittings
%J Geometry & topology
%D 2009
%P 2029-2050
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2029/
%R 10.2140/gt.2009.13.2029
%F GT_2009_13_4_a4
Hass, Joel; Thompson, Abigail; Thurston, William. Stabilization of Heegaard splittings. Geometry & topology, Tome 13 (2009) no. 4, pp. 2029-2050. doi : 10.2140/gt.2009.13.2029. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.2029/

[1] D Bachman, D Cooper, M E White, Large embedded balls and Heegaard genus in negative curvature, Algebr. Geom. Topol. 4 (2004) 31

[2] I Chavel, Isoperimetric inequalities. Differential geometric and analytic perspectives, Cambridge Tracts in Math. 145, Cambridge Univ. Press (2001)

[3] J Eells, L Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978) 1

[4] J Eells, L Lemaire, Deformations of metrics and associated harmonic maps, Proc. Indian Acad. Sci. Math. Sci. 90 (1981) 33

[5] J Eells, J H Sampson, Harmonic mappings of Riemannian manifolds, Amer. J. Math. 86 (1964) 109

[6] H Federer, Geometric measure theory, Grund. der math. Wissenschaften 153, Springer (1969)

[7] P Hartman, On homotopic harmonic maps, Canad. J. Math. 19 (1967) 673

[8] J Hass, P Scott, The existence of least area surfaces in $3$–manifolds, Trans. Amer. Math. Soc. 310 (1988) 87

[9] R Kirby, Problems in low dimensional manifold theory, from: "Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., 1976), Part 2" (editor R J Milgram), Proc. Sympos. Pure Math., XXXII, Amer. Math. Soc. (1978) 273

[10] Y N Minsky, Harmonic maps into hyperbolic $3$–manifolds, Trans. Amer. Math. Soc. 332 (1992) 607

[11] E E Moise, Geometric topology in dimensions $2$ and $3$, Graduate Texts in Math. 47, Springer (1977)

[12] H Namazi, J Souto, Heegaard splittings and pseudo-Anosov maps, preprint

[13] J T Pitts, J H Rubinstein, Applications of minimax to minimal surfaces and the topology of $3$–manifolds, from: "Miniconference on geometry and partial differential equations, 2 (Canberra, 1986)" (editors J E Hutchinson, L M Simon), Proc. Centre Math. Anal. Austral. Nat. Univ. 12, Austral. Nat. Univ. (1987) 137

[14] A W Reid, A non-Haken hyperbolic $3$–manifold covered by a surface bundle, Pacific J. Math. 167 (1995) 163

[15] H Rubinstein, M Scharlemann, Comparing Heegaard splittings of non-Haken $3$–manifolds, Topology 35 (1996) 1005

[16] J H Rubinstein, Minimal surfaces in geometric $3$–manifolds, from: "Global theory of minimal surfaces" (editor D Hoffman), Clay Math. Proc. 2, Amer. Math. Soc. (2005) 725

[17] J H Sampson, Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup. $(4)$ 11 (1978) 211

[18] M Scharlemann, Heegaard splittings of compact $3$–manifolds, from: "Handbook of geometric topology" (editors R J Daverman, R B Sher), North-Holland (2002) 921

[19] J Schultens, The stabilization problem for Heegaard splittings of Seifert fibered spaces, Topology Appl. 73 (1996) 133

[20] E Sedgwick, An infinite collection of Heegaard splittings that are equivalent after one stabilization, Math. Ann. 308 (1997) 65

[21] J Singer, Three-dimensional manifolds and their Heegaard diagrams, Trans. Amer. Math. Soc. 35 (1933) 88

Cité par Sources :