Refined analytic torsion on manifolds with boundary
Geometry & topology, Tome 13 (2009) no. 4, pp. 1989-2027.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We discuss the refined analytic torsion, introduced by M Braverman and T Kappeler as a canonical refinement of analytic torsion on closed manifolds. Unfortunately there seems to be no canonical way to extend their construction to compact manifolds with boundary. We propose a different refinement of analytic torsion, similar to Braverman and Kappeler, which does apply to compact manifolds with and without boundary. In a subsequent publication we prove a surgery formula for our construction.

DOI : 10.2140/gt.2009.13.1989
Keywords: refined analytic torsion, ideal boundary condition, non-self-adjoint operator

Vertman, Boris 1

1 Department of Mathematics, University of Bonn, Beringstr. 6, 53115 Bonn, Germany
@article{GT_2009_13_4_a3,
     author = {Vertman, Boris},
     title = {Refined analytic torsion on manifolds with boundary},
     journal = {Geometry & topology},
     pages = {1989--2027},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2009},
     doi = {10.2140/gt.2009.13.1989},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1989/}
}
TY  - JOUR
AU  - Vertman, Boris
TI  - Refined analytic torsion on manifolds with boundary
JO  - Geometry & topology
PY  - 2009
SP  - 1989
EP  - 2027
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1989/
DO  - 10.2140/gt.2009.13.1989
ID  - GT_2009_13_4_a3
ER  - 
%0 Journal Article
%A Vertman, Boris
%T Refined analytic torsion on manifolds with boundary
%J Geometry & topology
%D 2009
%P 1989-2027
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1989/
%R 10.2140/gt.2009.13.1989
%F GT_2009_13_4_a3
Vertman, Boris. Refined analytic torsion on manifolds with boundary. Geometry & topology, Tome 13 (2009) no. 4, pp. 1989-2027. doi : 10.2140/gt.2009.13.1989. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1989/

[1] S Agmon, On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems, Comm. Pure Appl. Math. 15 (1962) 119

[2] M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry. I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43

[3] N Berline, E Getzler, M Vergne, Heat kernels and Dirac operators, Grund. der Math. Wissenschaften 298, Springer (1992)

[4] B Booß-Bavnbek, M Lesch, C Zhu, The Calderon projection: new definition and applications

[5] M Braverman, T Kappeler, Comparison of the refined analytic and the Burghelea–Haller torsions, Ann. Inst. Fourier (Grenoble) 57 (2007) 2361

[6] M Braverman, T Kappeler, Refined analytic torsion as an element of the determinant line, Geom. Topol. 11 (2007) 139

[7] M Braverman, T Kappeler, A canonical quadratic form on the determinant line of a flat vector bundle, Int. Math. Res. Not. (2008)

[8] M Braverman, T Kappeler, Refined analytic torsion, J. Differential Geom. 78 (2008) 193

[9] J Brüning, M Lesch, Hilbert complexes, J. Funct. Anal. 108 (1992) 88

[10] J Brüning, M Lesch, Kähler–Hodge theory for conformal complex cones, Geom. Funct. Anal. 3 (1993) 439

[11] D Burghelea, L Friedlander, T Kappeler, Meyer–Vietoris type formula for determinants of elliptic differential operators, J. Funct. Anal. 107 (1992) 34

[12] D Burghelea, S Haller, Complex-valued Ray–Singer torsion, J. Funct. Anal. 248 (2007) 27

[13] D Burghelea, S Haller, Complex-valued Ray–Singer torsion II

[14] J Cheeger, Spectral geometry of singular Riemannian spaces, J. Differential Geom. 18 (1983)

[15] M Farber, Combinatorial invariants computing the Ray–Singer analytic torsion, Differential Geom. Appl. 6 (1996) 351

[16] M Farber, V Turaev, Poincaré–Reidemeister metric, Euler structures, and torsion, J. Reine Angew. Math. 520 (2000) 195

[17] P B Gilkey, Invariance theory, the heat equation, and the Atiyah–Singer index theorem, Studies in Advanced Math., CRC Press (1995)

[18] P B Gilkey, L Smith, The eta invariant for a class of elliptic boundary value problems, Comm. Pure Appl. Math. 36 (1983) 85

[19] P B Gilkey, L Smith, The twisted index problem for manifolds with boundary, J. Differential Geom. 18 (1983) 393

[20] R T Huang, Refined analytic torsion: comparison theorems and examples, Illinois J. Math. 51 (2007) 1309

[21] T Kato, Perturbation theory for linear operators, Grund. der Math. Wissenschaften 132, Springer (1976)

[22] F F Knudsen, D Mumford, The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div”, Math. Scand. 39 (1976) 19

[23] W Lück, Analytic and topological torsion for manifolds with boundary and symmetry, J. Differential Geom. 37 (1993) 263

[24] W Müller, Analytic torsion and $R$–torsion for unimodular representations, J. Amer. Math. Soc. 6 (1993) 721

[25] L Paquet, Problèmes mixtes pour le système de Maxwell, Ann. Fac. Sci. Toulouse Math. $(5)$ 4 (1982) 103

[26] D B Ray, I M Singer, $R$–torsion and the Laplacian on Riemannian manifolds, Advances in Math. 7 (1971) 145

[27] R Seeley, Analytic extension of the trace associated with elliptic boundary problems, Amer. J. Math. 91 (1969) 963

[28] R Seeley, The resolvent of an elliptic boundary problem, Amer. J. Math. 91 (1969) 889

[29] G Su, W Zhang, A Cheeger–Müller theorem for symmetric bilinear torsions, Chin. Ann. Math. Ser. B 29 (2008) 385

[30] V Turaev, Euler structures, nonsingular vector fields, and Reidemeister-type torsions, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989) 607, 672

[31] V Turaev, Torsion invariants of $\mathrm{Spin}^c$–structures on $3$–manifolds, Math. Res. Lett. 4 (1997) 679

[32] B Vertman, Gluing formula for refined analytic torsion

[33] S M Vishik, Generalized Ray–Singer conjecture. I. A manifold with a smooth boundary, Comm. Math. Phys. 167 (1995) 1

Cité par Sources :