Cannon–Thurston maps for pared manifolds of bounded geometry
Geometry & topology, Tome 13 (2009) no. 1, pp. 189-245.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let Nh H(M,P) be a hyperbolic structure of bounded geometry on a pared manifold such that each component of 0M = M P is incompressible. We show that the limit set of Nh is locally connected by constructing a natural Cannon–Thurston map. This provides a unified treatment, an alternate proof and a generalization of results due to Cannon and Thurston, Minsky, Bowditch, Klarreich and the author.

DOI : 10.2140/gt.2009.13.189
Keywords: Cannon–Thurston Maps, local connectivity of limit sets

Mj, Mahan 1

1 School of Mathematical Sciences, RKM Vivekananda University, PO Belur Math, Dt Howrah, WB-711202, India
@article{GT_2009_13_1_a5,
     author = {Mj, Mahan},
     title = {Cannon{\textendash}Thurston maps for pared manifolds of bounded geometry},
     journal = {Geometry & topology},
     pages = {189--245},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2009},
     doi = {10.2140/gt.2009.13.189},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.189/}
}
TY  - JOUR
AU  - Mj, Mahan
TI  - Cannon–Thurston maps for pared manifolds of bounded geometry
JO  - Geometry & topology
PY  - 2009
SP  - 189
EP  - 245
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.189/
DO  - 10.2140/gt.2009.13.189
ID  - GT_2009_13_1_a5
ER  - 
%0 Journal Article
%A Mj, Mahan
%T Cannon–Thurston maps for pared manifolds of bounded geometry
%J Geometry & topology
%D 2009
%P 189-245
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.189/
%R 10.2140/gt.2009.13.189
%F GT_2009_13_1_a5
Mj, Mahan. Cannon–Thurston maps for pared manifolds of bounded geometry. Geometry & topology, Tome 13 (2009) no. 1, pp. 189-245. doi : 10.2140/gt.2009.13.189. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.189/

[1] W Abikoff, Kleinian groups—geometrically finite and geometrically perverse, from: "Geometry of group representations (Boulder, CO, 1987)", Contemp. Math. 74, Amer. Math. Soc. (1988) 1

[2] J W Anderson, B Maskit, On the local connectivity of limit set of Kleinian groups, Complex Variables Theory Appl. 31 (1996) 177

[3] M Bestvina, Geometric group theory problem list (2004)

[4] M Bestvina, M Feighn, A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992) 85

[5] M Bestvina, M Feighn, M Handel, Laminations, trees, and irreducible automorphisms of free groups, Geom. Funct. Anal. 7 (1997) 215

[6] M Bestvina, M Handel, Train tracks and automorphisms of free groups, Ann. of Math. $(2)$ 135 (1992) 1

[7] F Bonahon, Bouts des variétés hyperboliques de dimension $3$, Ann. of Math. $(2)$ 124 (1986) 71

[8] B H Bowditch, Relatively hyperbolic groups, preprint, Southampton (1997)

[9] B H Bowditch, A topological characterisation of hyperbolic groups, J. Amer. Math. Soc. 11 (1998) 643

[10] B H Bowditch, Convergence groups and configuration spaces, from: "Geometric group theory down under (Canberra, 1996)" (editors J Cossey, C F Miller, W D Neumann, M Shapiro), de Gruyter (1999) 23

[11] B H Bowditch, Stacks of hyperbolic spaces and ends of 3 manifolds, preprint, Southampton (2002)

[12] B H Bowditch, The Cannon–Thurston map for punctured-surface groups, Math. Z. 255 (2007) 35

[13] J F Brock, Iteration of mapping classes and limits of hyperbolic 3–manifolds, Invent. Math. 143 (2001) 523

[14] J F Brock, R D Canary, Y N Minsky, The Classification of Kleinian surface groups II: The Ending Lamination Conjecture, preprint (2004)

[15] J W Cannon, W P Thurston, Group invariant Peano curves, Geom. Topol. 11 (2007) 1315

[16] M Coornaert, T Delzant, A Papadopoulos, Géométrie et théorie des groupes, Lecture Notes in Mathematics 1441, Springer (1990)

[17] B Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998) 810

[18] W J Floyd, Group completions and limit sets of Kleinian groups, Invent. Math. 57 (1980) 205

[19] É Ghys, P D L Harpe, editors, Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Mathematics 83, Birkhäuser (1990)

[20] M Gromov, Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[21] M Gromov, Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics 152, Birkhäuser (1999)

[22] J G Hocking, G S Young, Topology, Addison–Wesley Publishing Co., Reading, MA-London (1961)

[23] E Klarreich, Semiconjugacies between Kleinian group actions on the Riemann sphere, Amer. J. Math. 121 (1999) 1031

[24] C T Mcmullen, Amenability, Poincaré series and quasiconformal maps, Invent. Math. 97 (1989) 95

[25] C T Mcmullen, Iteration on Teichmüller space, Invent. Math. 99 (1990) 425

[26] C T Mcmullen, Local connectivity, Kleinian groups and geodesics on the blowup of the torus, Invent. Math. 146 (2001) 35

[27] Y N Minsky, Teichmüller geodesics and ends of hyperbolic $3$-manifolds, Topology 32 (1993) 625

[28] Y N Minsky, On rigidity, limit sets, and end invariants of hyperbolic $3$–manifolds, J. Amer. Math. Soc. 7 (1994) 539

[29] Y N Minsky, The classification of punctured-torus groups, Ann. of Math. $(2)$ 149 (1999) 559

[30] Y N Minsky, Bounded geometry for Kleinian groups, Invent. Math. 146 (2001) 143

[31] Y N Minsky, The classification of Kleinian surface groups I: Models and Bounds, preprint (2002)

[32] Y N Minsky, End invariants and the classification of hyperbolic 3–manifolds, from: "Current developments in mathematics, 2002", Int. Press, Somerville, MA (2003) 181

[33] M Mitra, PhD thesis, UC Berkeley (1997)

[34] M Mitra, Ending laminations for hyperbolic group extensions, Geom. Funct. Anal. 7 (1997) 379

[35] M Mitra, Cannon–Thurston maps for hyperbolic group extensions, Topology 37 (1998) 527

[36] M Mitra, Cannon–Thurston maps for trees of hyperbolic metric spaces, J. Differential Geom. 48 (1998) 135

[37] H Miyachi, Semiconjugacies between actions of topologically tame Kleinian groups, preprint (2002)

[38] M Mj, Cannon–Thurston Maps for Surface Groups I: Amalgamation Geometry and Split Geometry (2005)

[39] M Mj, Cannon–Thurston maps, i–bounded geometry and a theorem of McMullen (2005)

[40] M Mj, Cannon–Thurston Maps for Surface Groups II: Split Geometry and the Minsky Model (2006)

[41] M Mj, A Pal, Relative Hyperbolicity, Trees of Spaces and Cannon–Thurston Maps (2007)

[42] R M Myers, From Beowulf to Virginia Woolf: An astounding and wholly unauthorized history of English literature, Bobbs–Merrill, Indianapolis (1952)

[43] A Pal, Relative Hyperbolic Extensions of Groups and Cannon–Thurston Maps (2008)

[44] G P Scott, Compact submanifolds of $3$–manifolds, J. London Math. Soc. $(2)$ 7 (1973) 246

[45] J Souto, Cannon–Thurston maps for thick free groups, preprint (2006)

[46] W P Thurston, The geometry and topology of 3–manifolds, Princeton University notes (1980)

[47] W P Thurston, Hyperbolic structures on $3$–manifolds. I. Deformation of acylindrical manifolds, Ann. of Math. $(2)$ 124 (1986) 203

[48] W P Thurston, Hyperbolic structures on $3$–manifolds. III. Deformation of 3–manifolds with incompressible boundary, preprint (1986)

[49] A Yaman, A topological characterisation of relatively hyperbolic groups, J. Reine Angew. Math. 566 (2004) 41

Cité par Sources :