Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a hyperbolic structure of bounded geometry on a pared manifold such that each component of is incompressible. We show that the limit set of is locally connected by constructing a natural Cannon–Thurston map. This provides a unified treatment, an alternate proof and a generalization of results due to Cannon and Thurston, Minsky, Bowditch, Klarreich and the author.
Mj, Mahan 1
@article{GT_2009_13_1_a5, author = {Mj, Mahan}, title = {Cannon{\textendash}Thurston maps for pared manifolds of bounded geometry}, journal = {Geometry & topology}, pages = {189--245}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2009}, doi = {10.2140/gt.2009.13.189}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.189/} }
Mj, Mahan. Cannon–Thurston maps for pared manifolds of bounded geometry. Geometry & topology, Tome 13 (2009) no. 1, pp. 189-245. doi : 10.2140/gt.2009.13.189. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.189/
[1] Kleinian groups—geometrically finite and geometrically perverse, from: "Geometry of group representations (Boulder, CO, 1987)", Contemp. Math. 74, Amer. Math. Soc. (1988) 1
,[2] On the local connectivity of limit set of Kleinian groups, Complex Variables Theory Appl. 31 (1996) 177
, ,[3] Geometric group theory problem list (2004)
,[4] A combination theorem for negatively curved groups, J. Differential Geom. 35 (1992) 85
, ,[5] Laminations, trees, and irreducible automorphisms of free groups, Geom. Funct. Anal. 7 (1997) 215
, , ,[6] Train tracks and automorphisms of free groups, Ann. of Math. $(2)$ 135 (1992) 1
, ,[7] Bouts des variétés hyperboliques de dimension $3$, Ann. of Math. $(2)$ 124 (1986) 71
,[8] Relatively hyperbolic groups, preprint, Southampton (1997)
,[9] A topological characterisation of hyperbolic groups, J. Amer. Math. Soc. 11 (1998) 643
,[10] Convergence groups and configuration spaces, from: "Geometric group theory down under (Canberra, 1996)" (editors J Cossey, C F Miller, W D Neumann, M Shapiro), de Gruyter (1999) 23
,[11] Stacks of hyperbolic spaces and ends of 3 manifolds, preprint, Southampton (2002)
,[12] The Cannon–Thurston map for punctured-surface groups, Math. Z. 255 (2007) 35
,[13] Iteration of mapping classes and limits of hyperbolic 3–manifolds, Invent. Math. 143 (2001) 523
,[14] The Classification of Kleinian surface groups II: The Ending Lamination Conjecture, preprint (2004)
, , ,[15] Group invariant Peano curves, Geom. Topol. 11 (2007) 1315
, ,[16] Géométrie et théorie des groupes, Lecture Notes in Mathematics 1441, Springer (1990)
, , ,[17] Relatively hyperbolic groups, Geom. Funct. Anal. 8 (1998) 810
,[18] Group completions and limit sets of Kleinian groups, Invent. Math. 57 (1980) 205
,[19] Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Mathematics 83, Birkhäuser (1990)
, , editors,[20] Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75
,[21] Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics 152, Birkhäuser (1999)
,[22] Topology, Addison–Wesley Publishing Co., Reading, MA-London (1961)
, ,[23] Semiconjugacies between Kleinian group actions on the Riemann sphere, Amer. J. Math. 121 (1999) 1031
,[24] Amenability, Poincaré series and quasiconformal maps, Invent. Math. 97 (1989) 95
,[25] Iteration on Teichmüller space, Invent. Math. 99 (1990) 425
,[26] Local connectivity, Kleinian groups and geodesics on the blowup of the torus, Invent. Math. 146 (2001) 35
,[27] Teichmüller geodesics and ends of hyperbolic $3$-manifolds, Topology 32 (1993) 625
,[28] On rigidity, limit sets, and end invariants of hyperbolic $3$–manifolds, J. Amer. Math. Soc. 7 (1994) 539
,[29] The classification of punctured-torus groups, Ann. of Math. $(2)$ 149 (1999) 559
,[30] Bounded geometry for Kleinian groups, Invent. Math. 146 (2001) 143
,[31] The classification of Kleinian surface groups I: Models and Bounds, preprint (2002)
,[32] End invariants and the classification of hyperbolic 3–manifolds, from: "Current developments in mathematics, 2002", Int. Press, Somerville, MA (2003) 181
,[33]
, PhD thesis, UC Berkeley (1997)[34] Ending laminations for hyperbolic group extensions, Geom. Funct. Anal. 7 (1997) 379
,[35] Cannon–Thurston maps for hyperbolic group extensions, Topology 37 (1998) 527
,[36] Cannon–Thurston maps for trees of hyperbolic metric spaces, J. Differential Geom. 48 (1998) 135
,[37] Semiconjugacies between actions of topologically tame Kleinian groups, preprint (2002)
,[38] Cannon–Thurston Maps for Surface Groups I: Amalgamation Geometry and Split Geometry (2005)
,[39] Cannon–Thurston maps, i–bounded geometry and a theorem of McMullen (2005)
,[40] Cannon–Thurston Maps for Surface Groups II: Split Geometry and the Minsky Model (2006)
,[41] Relative Hyperbolicity, Trees of Spaces and Cannon–Thurston Maps (2007)
, ,[42] From Beowulf to Virginia Woolf: An astounding and wholly unauthorized history of English literature, Bobbs–Merrill, Indianapolis (1952)
,[43] Relative Hyperbolic Extensions of Groups and Cannon–Thurston Maps (2008)
,[44] Compact submanifolds of $3$–manifolds, J. London Math. Soc. $(2)$ 7 (1973) 246
,[45] Cannon–Thurston maps for thick free groups, preprint (2006)
,[46] The geometry and topology of 3–manifolds, Princeton University notes (1980)
,[47] Hyperbolic structures on $3$–manifolds. I. Deformation of acylindrical manifolds, Ann. of Math. $(2)$ 124 (1986) 203
,[48] Hyperbolic structures on $3$–manifolds. III. Deformation of 3–manifolds with incompressible boundary, preprint (1986)
,[49] A topological characterisation of relatively hyperbolic groups, J. Reine Angew. Math. 566 (2004) 41
,Cité par Sources :