Lefschetz fibrations and symplectic homology
Geometry & topology, Tome 13 (2009) no. 4, pp. 1877-1944.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that for each k > 3 there are infinitely many finite type Stein manifolds diffeomorphic to Euclidean space 2k which are pairwise distinct as symplectic manifolds.

DOI : 10.2140/gt.2009.13.1877
Keywords: Stein manifold, symplectic homology, Lefschetz fibration

McLean, Mark 1

1 Departement Mathematik, ETH Zürich, HG F 28.6, Rämistrasse 101, 8092 Zürich, Switzerland
@article{GT_2009_13_4_a1,
     author = {McLean, Mark},
     title = {Lefschetz fibrations and symplectic homology},
     journal = {Geometry & topology},
     pages = {1877--1944},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2009},
     doi = {10.2140/gt.2009.13.1877},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1877/}
}
TY  - JOUR
AU  - McLean, Mark
TI  - Lefschetz fibrations and symplectic homology
JO  - Geometry & topology
PY  - 2009
SP  - 1877
EP  - 1944
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1877/
DO  - 10.2140/gt.2009.13.1877
ID  - GT_2009_13_4_a1
ER  - 
%0 Journal Article
%A McLean, Mark
%T Lefschetz fibrations and symplectic homology
%J Geometry & topology
%D 2009
%P 1877-1944
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1877/
%R 10.2140/gt.2009.13.1877
%F GT_2009_13_4_a1
McLean, Mark. Lefschetz fibrations and symplectic homology. Geometry & topology, Tome 13 (2009) no. 4, pp. 1877-1944. doi : 10.2140/gt.2009.13.1877. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1877/

[1] A Abbondandolo, M Schwarz, Floer homology of cotangent bundles and the loop product

[2] A Abbondandolo, M Schwarz, Note on Floer homology and loop space homology, from: "Morse theoretic methods in nonlinear analysis and in symplectic topology" (editors P Biran, O Cornea, F Lalonde), NATO Sci. Ser. II Math. Phys. Chem. 217, Springer (2006) 75

[3] A Abbondandolo, P Seidel, An open string analogue of Viterbo functoriality

[4] F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799

[5] E Brieskorn, Beispiele zur Differentialtopologie von Singularitäten, Invent. Math. 2 (1966) 1

[6] A D R Choudary, A Dimca, Complex hypersurfaces diffeomorphic to affine spaces, Kodai Math. J. 17 (1994) 171

[7] K Cieliebak, Handle attaching in symplectic homology and the chord conjecture, J. Eur. Math. Soc. $($JEMS$)$ 4 (2002) 115

[8] K Cieliebak, Y Eliashberg, Symplectic geometry of Stein manifolds, in preparation

[9] K Cieliebak, A Floer, H Hofer, K Wysocki, Applications of symplectic homology. II. Stability of the action spectrum, Math. Z. 223 (1996) 27

[10] T Tom Dieck, T Petrie, The Abhyankar–Moh problem in dimension $3$, from: "Transformation groups (Osaka, 1987)" (editor K Kawakubo), Lecture Notes in Math. 1375, Springer (1989) 48

[11] T Tom Dieck, T Petrie, Contractible affine surfaces of Kodaira dimension one, Japan. J. Math. $($N.S.$)$ 16 (1990) 147

[12] Y Eliashberg, Topological characterization of Stein manifolds of dimension $\gt 2$, Internat. J. Math. 1 (1990) 29

[13] Y Eliashberg, Symplectic geometry of plurisubharmonic functions, from: "Gauge theory and symplectic geometry (Montreal, PQ, 1995)" (editors J Hurtubise, F Lalonde, G Sabidussi), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 488, Kluwer Acad. Publ. (1997) 49

[14] A Floer, H Hofer, D Salamon, Transversality in elliptic Morse theory for the symplectic action, Duke Math. J. 80 (1995) 251

[15] K Fukaya, P Seidel, I Smith, Exact Lagrangian submanifolds in simply-connected cotangent bundles

[16] R E Gompf, Handlebody construction of Stein surfaces, Ann. of Math. $(2)$ 148 (1998) 619

[17] D Hermann, Holomorphic curves and Hamiltonian systems in an open set with restricted contact-type boundary, Duke Math. J. 103 (2000) 335

[18] S Kaliman, Exotic analytic structures and Eisenman intrinsic measures, Israel J. Math. 88 (1994) 411

[19] M Mclean, The symplectic topology of Stein manifolds, PhD thesis, University of Cambridge (2008)

[20] A Oancea, A survey of Floer homology for manifolds with contact type boundary or symplectic homology, from: "Symplectic geometry and Floer homology. A survey of the Floer homology for manifolds with contact type boundary or symplectic homology", Ensaios Mat. 7, Soc. Brasil. Mat. (2004) 51

[21] A Oancea, The Künneth formula in Floer homology for manifolds with restricted contact type boundary, Math. Ann. 334 (2006) 65

[22] C P Ramanujam, A topological characterisation of the affine plane as an algebraic variety, Ann. of Math. $(2)$ 94 (1971) 69

[23] P Seidel, Symplectic homology as Hochschild homology

[24] P Seidel, A long exact sequence for symplectic Floer cohomology, Topology 42 (2003) 1003

[25] P Seidel, A biased view of symplectic cohomology, from: "Current Developments in Math. (2006)" (editors D Jerison, B Mazur, T Mrowka, W Schmid, R P Stanley, S T Yau), Intl. Press (2008) 211

[26] P Seidel, Fukaya categories and Picard–Lefschetz theory, Zürich Lect. in Adv. Math., Eur. Math. Soc. (2008)

[27] P Seidel, I Smith, The symplectic topology of Ramanujam's surface, Comment. Math. Helv. 80 (2005) 859

[28] I Ustilovsky, Infinitely many contact structures on $S^{4m+1}$, Internat. Math. Res. Notices (1999) 781

[29] C Viterbo, Functors and computations in Floer homology with applications. I, Geom. Funct. Anal. 9 (1999) 985

[30] M Zaĭdenberg, Exotic algebraic structures on affine spaces, Algebra i Analiz 11 (1999) 3

Cité par Sources :