Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
The theory of stable pairs in the derived category yields an enumerative geometry of curves in –folds. We evaluate the equivariant vertex for stable pairs on toric –folds in terms of weighted box counting. In the toric Calabi–Yau case, the result simplifies to a new form of pure box counting. The conjectural equivalence with the DT vertex predicts remarkable identities.
The equivariant vertex governs primary insertions in the theory of stable pairs for toric varieties. We consider also the descendent vertex and conjecture the complete rationality of the descendent theory for stable pairs.
Pandharipande, Rahul 1 ; Thomas, Richard P 2
@article{GT_2009_13_4_a0, author = {Pandharipande, Rahul and Thomas, Richard P}, title = {The 3{\textendash}fold vertex via stable pairs}, journal = {Geometry & topology}, pages = {1835--1876}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2009}, doi = {10.2140/gt.2009.13.1835}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1835/} }
TY - JOUR AU - Pandharipande, Rahul AU - Thomas, Richard P TI - The 3–fold vertex via stable pairs JO - Geometry & topology PY - 2009 SP - 1835 EP - 1876 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1835/ DO - 10.2140/gt.2009.13.1835 ID - GT_2009_13_4_a0 ER -
Pandharipande, Rahul; Thomas, Richard P. The 3–fold vertex via stable pairs. Geometry & topology, Tome 13 (2009) no. 4, pp. 1835-1876. doi : 10.2140/gt.2009.13.1835. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1835/
[1] The intrinsic normal cone, Invent. Math. 128 (1997) 45
, ,[2] The local Gromov–Witten theory of curves, J. Amer. Math. Soc. 21 (2008) 101
, ,[3] Gauge theory in higher dimensions, from: "The geometric universe (Oxford, 1996)" (editors S A Huggett, L J Mason, K P Tod, S T Tsou, N M J Woodhouse), Oxford Univ. Press (1998) 31
, ,[4] Localization of virtual classes, Invent. Math. 135 (1999) 487
, ,[5] The geometry of moduli spaces of sheaves, Aspects of Math. E31, Friedr. Vieweg Sohn (1997)
, ,[6] Systèmes cohérents et structures de niveau, Astérisque (1993) 143
,[7] Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998) 119
, ,[8] Gromov–Witten theory of $\mathcal{A}_n$–resolutions, Geom. Topol. 13 (2009) 1729
,[9] Gromov–Witten theory and Donaldson–Thomas theory. I, Compos. Math. 142 (2006) 1263
, , , ,[10] Gromov-Witten theory and Donaldson-Thomas theory. II, Compos. Math. 142 (2006) 1286
, , , ,[11] Donaldson–Thomas theory of $A_n{\times}\mathbb{P}^1$
, ,[12] The Gromov–Witten/Donaldson–Thomas correspondence for toric threefolds, in preparation
, , , ,[13] The local Donaldson–Thomas theory for curves
, ,[14] Curve counting via stable pairs in the derived category
, ,[15] A holomorphic Casson invariant for Calabi–Yau $3$–folds, and bundles on $K3$ fibrations, J. Differential Geom. 54 (2000) 367
,Cité par Sources :