Gromov–Witten theory of 𝒜n–resolutions
Geometry & topology, Tome 13 (2009) no. 3, pp. 1729-1773.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We give a complete solution for the reduced Gromov–Witten theory of resolved surface singularities of type An, for any genus, with arbitrary descendent insertions. We also present a partial evaluation of the T–equivariant relative Gromov–Witten theory of the threefold An ×P1 which, under a nondegeneracy hypothesis, yields a complete solution for the theory. The results given here allow comparison of this theory with the quantum cohomology of the Hilbert scheme of points on the An surfaces. We discuss generalizations to linear Hodge insertions and to surface resolutions of type D,E. As a corollary, we present a new derivation of the stationary Gromov–Witten theory of P1.

DOI : 10.2140/gt.2009.13.1729
Keywords: Gromov–Witten theory, ADE singularity

Maulik, Davesh 1

1 Department of Mathematics, Columbia University, New York, NY 10027, USA
@article{GT_2009_13_3_a10,
     author = {Maulik, Davesh},
     title = {Gromov{\textendash}Witten theory of {\ensuremath{\mathscr{A}}n{\textendash}resolutions}},
     journal = {Geometry & topology},
     pages = {1729--1773},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2009},
     doi = {10.2140/gt.2009.13.1729},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1729/}
}
TY  - JOUR
AU  - Maulik, Davesh
TI  - Gromov–Witten theory of 𝒜n–resolutions
JO  - Geometry & topology
PY  - 2009
SP  - 1729
EP  - 1773
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1729/
DO  - 10.2140/gt.2009.13.1729
ID  - GT_2009_13_3_a10
ER  - 
%0 Journal Article
%A Maulik, Davesh
%T Gromov–Witten theory of 𝒜n–resolutions
%J Geometry & topology
%D 2009
%P 1729-1773
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1729/
%R 10.2140/gt.2009.13.1729
%F GT_2009_13_3_a10
Maulik, Davesh. Gromov–Witten theory of 𝒜n–resolutions. Geometry & topology, Tome 13 (2009) no. 3, pp. 1729-1773. doi : 10.2140/gt.2009.13.1729. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1729/

[1] M Aganagic, A Klemm, M Mariño, C Vafa, The topological vertex, Comm. Math. Phys. 254 (2005) 425

[2] K Behrend, B Fantechi

[3] J Bryan, T Graber, The crepant resolution conjecture

[4] J Bryan, S Katz, N C Leung, Multiple covers and the integrality conjecture for rational curves in Calabi–Yau threefolds, J. Algebraic Geom. 10 (2001) 549

[5] J Bryan, N C Leung, The enumerative geometry of $K3$ surfaces and modular forms, J. Amer. Math. Soc. 13 (2000) 371

[6] J Bryan, R Pandharipande, The local Gromov–Witten theory of curves, J. Amer. Math. Soc. 21 (2008) 101

[7] W Chen, Y Ruan, Orbifold Gromov-Witten theory, from: "Orbifolds in mathematics and physics (Madison, WI, 2001)" (editors A Adem, J Morava, Y Ruan), Contemp. Math. 310, Amer. Math. Soc. (2002) 25

[8] C Faber, R Pandharipande, Hodge integrals and Gromov–Witten theory, Invent. Math. 139 (2000) 173

[9] A B Givental, Gromov–Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1 (2001) 551, 645

[10] I P Goulden, D M Jackson, R Vakil, Towards the geometry of double Hurwitz numbers, Adv. Math. 198 (2005) 43

[11] T Graber, R Pandharipande, Localization of virtual classes, Invent. Math. 135 (1999) 487

[12] I Grojnowski, Instantons and affine algebras. I. The Hilbert scheme and vertex operators, Math. Res. Lett. 3 (1996) 275

[13] J Li, C C M Liu, K Liu, J Zhou, A mathematical theory of the topological vertex

[14] C C M Liu, K Liu, J Zhou, A formula of two-partition Hodge integrals, J. Amer. Math. Soc. 20 (2007) 149

[15] M Manetti, Lie description of higher obstructions to deforming submanifolds

[16] D Maulik, A Oblomkov, Donaldson–Thomas theory of $\mathcal{A}_n\times \mathbf{P}^1$, in preparation

[17] D Maulik, A Oblomkov, Quantum cohomology of Hilbert scheme of points on $\mathcal{A}_n$–resolutions, in preparation

[18] D Maulik, A Oblomkov, A Okounkov, R Pandharipande, Gromov–Witten/Donaldson–Thomas correspondence for toric threefolds, in preparation

[19] D Maulik, R Pandharipande, Gromov–Witten theory and Noether–Lefschetz theory

[20] D Maulik, R Pandharipande, A topological view of Gromov–Witten theory, Topology 45 (2006) 887

[21] H Nakajima, Lectures on Hilbert schemes of points on surfaces, Univ. Lecture Series 18, Amer. Math. Soc. (1999)

[22] A Okounkov, R Pandharipande, The local Donaldson–Thomas theory for curves

[23] A Okounkov, R Pandharipande, Quantum cohomology of the Hilbert scheme of points in the plane

[24] A Okounkov, R Pandharipande, The equivariant Gromov–Witten theory of $\mathbf{P}^1$, Ann. of Math. $(2)$ 163 (2006) 561

[25] A Okounkov, R Pandharipande, Gromov–Witten theory, Hurwitz theory, and completed cycles, Ann. of Math. $(2)$ 163 (2006) 517

[26] Z Ran, Semiregularity, obstructions and deformations of Hodge classes, Ann. Scuola Norm. Sup. Pisa Cl. Sci. $(4)$ 28 (1999) 809

Cité par Sources :