Abelian subgroups of Out(Fn)
Geometry & topology, Tome 13 (2009) no. 3, pp. 1657-1727.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We classify abelian subgroups of Out(Fn) up to finite index in an algorithmic and computationally friendly way. A process called disintegration is used to canonically decompose a single rotationless element ϕ into a composition of finitely many elements and then these elements are used to generate an abelian subgroup A(ϕ) that contains ϕ. The main theorem is that up to finite index every abelian subgroup is realized by this construction. As an application we give an explicit description, in terms of relative train track maps and up to finite index, of all maximal rank abelian subgroups of Out(Fn) and of IAn.

DOI : 10.2140/gt.2009.13.1657
Keywords: outer automorphism, free group, train track

Feighn, Mark 1 ; Handel, Michael 2

1 Math Department, Rutgers University, Newark, NJ 07102, USA
2 Math Department, Lehman College, Bronx, NY 10468, USA
@article{GT_2009_13_3_a9,
     author = {Feighn, Mark and Handel, Michael},
     title = {Abelian subgroups of {Out(Fn)}},
     journal = {Geometry & topology},
     pages = {1657--1727},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2009},
     doi = {10.2140/gt.2009.13.1657},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1657/}
}
TY  - JOUR
AU  - Feighn, Mark
AU  - Handel, Michael
TI  - Abelian subgroups of Out(Fn)
JO  - Geometry & topology
PY  - 2009
SP  - 1657
EP  - 1727
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1657/
DO  - 10.2140/gt.2009.13.1657
ID  - GT_2009_13_3_a9
ER  - 
%0 Journal Article
%A Feighn, Mark
%A Handel, Michael
%T Abelian subgroups of Out(Fn)
%J Geometry & topology
%D 2009
%P 1657-1727
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1657/
%R 10.2140/gt.2009.13.1657
%F GT_2009_13_3_a9
Feighn, Mark; Handel, Michael. Abelian subgroups of Out(Fn). Geometry & topology, Tome 13 (2009) no. 3, pp. 1657-1727. doi : 10.2140/gt.2009.13.1657. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1657/

[1] H Bass, A Lubotzky, Linear-central filtrations on groups, from: "The mathematical legacy of Wilhelm Magnus: groups, geometry and special functions (Brooklyn, NY, 1992)" (editors W Abikoff, J S Birman, K Kuiken), Contemp. Math. 169, Amer. Math. Soc. (1994) 45

[2] M Bestvina, M Feighn, M Handel, The Tits alternative for $\mathrm{Out}(F_n)$. I. Dynamics of exponentially-growing automorphisms, Ann. of Math. $(2)$ 151 (2000) 517

[3] M Bestvina, M Feighn, M Handel, Solvable subgroups of $\mathrm{Out}(F_n)$ are virtually Abelian, Geom. Dedicata 104 (2004) 71

[4] M Bestvina, M Handel, Train tracks and automorphisms of free groups, Ann. of Math. $(2)$ 135 (1992) 1

[5] D Cooper, Automorphisms of free groups have finitely generated fixed point sets, J. Algebra 111 (1987) 453

[6] M Culler, Finite groups of outer automorphisms of a free group, from: "Contributions to group theory" (editors K I Appel, J G Ratcliffe, P E Schupp), Contemp. Math. 33, Amer. Math. Soc. (1984) 197

[7] M Culler, K Vogtmann, Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986) 91

[8] B Farb, M Handel, Commensurations of $\mathrm{Out}(\mathrm{F}_n)$, Publ. Math. Inst. Hautes Études Sci. (2007) 1

[9] A Fathi, L Laudenbach, V Poénaru, Editors, Travaux de Thurston sur les surfaces, Astérisque 66, Soc. Math. France (1979) 284

[10] M. Feighn, M Handel, The recognition theorem for $\Out({F}_n)$, Preprint

[11] J Franks, M Handel, K Parwani, Fixed points of abelian actions, J. Mod. Dyn. 1 (2007) 443

[12] J Franks, M Handel, K Parwani, Fixed points of abelian actions on $S^2$, Ergodic Theory Dynam. Systems 27 (2007) 1557

[13] D Gaboriau, A Jaeger, G Levitt, M Lustig, An index for counting fixed points of automorphisms of free groups, Duke Math. J. 93 (1998) 425

[14] G Levitt, M Lustig, Most automorphisms of a hyperbolic group have very simple dynamics, Ann. Sci. École Norm. Sup. $(4)$ 33 (2000) 507

[15] G Levitt, M Lustig, Automorphisms of free groups have asymptotically periodic dynamics, J. Reine Angew. Math. 619 (2008) 1

[16] J Nielsen, Die Isomorphismengruppe der freien Gruppen, Math. Ann. 91 (1924) 169

[17] W P Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. $($N.S.$)$ 19 (1988) 417

Cité par Sources :