Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
In 1997, T Cochran, K Orr, and P Teichner [Ann. of Math. (2) 157 (2003) 433-519] defined a filtration of the classical knot concordance group ,
The filtration is important because of its strong connection to the classification of topological –manifolds. Here we introduce new techniques for studying and use them to prove that, for each , the group has infinite rank. We establish the same result for the corresponding filtration of the smooth concordance group. We also resolve a long-standing question as to whether certain natural families of knots, first considered by Casson–Gordon and Gilmer, contain slice knots.
Cochran, Tim D 1 ; Harvey, Shelly 1 ; Leidy, Constance 2
@article{GT_2009_13_3_a4, author = {Cochran, Tim D and Harvey, Shelly and Leidy, Constance}, title = {Knot concordance and higher-order {Blanchfield} duality}, journal = {Geometry & topology}, pages = {1419--1482}, publisher = {mathdoc}, volume = {13}, number = {3}, year = {2009}, doi = {10.2140/gt.2009.13.1419}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1419/} }
TY - JOUR AU - Cochran, Tim D AU - Harvey, Shelly AU - Leidy, Constance TI - Knot concordance and higher-order Blanchfield duality JO - Geometry & topology PY - 2009 SP - 1419 EP - 1482 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1419/ DO - 10.2140/gt.2009.13.1419 ID - GT_2009_13_3_a4 ER -
%0 Journal Article %A Cochran, Tim D %A Harvey, Shelly %A Leidy, Constance %T Knot concordance and higher-order Blanchfield duality %J Geometry & topology %D 2009 %P 1419-1482 %V 13 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1419/ %R 10.2140/gt.2009.13.1419 %F GT_2009_13_3_a4
Cochran, Tim D; Harvey, Shelly; Leidy, Constance. Knot concordance and higher-order Blanchfield duality. Geometry & topology, Tome 13 (2009) no. 3, pp. 1419-1482. doi : 10.2140/gt.2009.13.1419. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1419/
[1] Atomic surgery problems, from: "Four-manifold theory (Durham, N.H., 1982)" (editors C Gordon, R Kirby), Contemp. Math. 35, Amer. Math. Soc. (1984) 181
, ,[2] On slice knots in dimension three, from: "Algebraic and geometric topology (Proc. Sympos. Pure Math., Stanford Univ., 1976), Part 2" (editor R J Milgram), Proc. Sympos. Pure Math. XXXII, Amer. Math. Soc. (1978) 39
, ,[3] Cobordism of classical knots, from: "À la recherche de la topologie perdue" (editors L Guillou, A Marin), Progr. Math. 62, Birkhäuser (1986) 181
, ,[4] The structure of the rational concordance group of knots, Mem. Amer. Math. Soc. 189 (2007)
,[5] Topological minimal genus and $L^2$–signatures, Algebr. Geom. Topol. 8 (2008) 885
,[6] Bounds on the von Neumann dimension of $L^2$–cohomology and the Gauss–Bonnet theorem for open manifolds, J. Differential Geom. 21 (1985) 1
, ,[7] Noncommutative knot theory, Algebr. Geom. Topol. 4 (2004) 347
,[8] New constructions of slice links, to appear in Comment. Math. Helv.
, , ,[9] Knot concordance and Blanchfield duality, Oberwolfach Reports 3 (2006)
, , ,[10] Link concordance and generalized doubling operators, Algebr. Geom. Topol. 8 (2008) 1593
, , ,[11] Higher-order Alexander invariants and filtrations of the knot concordance group, Trans. Amer. Math. Soc. 360 (2008) 1407
, ,[12] Knot concordance, Whitney towers and $L^2$–signatures, Ann. of Math. $(2)$ 157 (2003) 433
, , ,[13] Structure in the classical knot concordance group, Comment. Math. Helv. 79 (2004) 105
, , ,[14] Knot concordance and von Neumann $\rho$–invariants, Duke Math. J. 137 (2007) 337
, ,[15] Eta invariants as sliceness obstructions and their relation to Casson–Gordon invariants, Algebr. Geom. Topol. 4 (2004) 893
,[16] $L^2$–eta-invariants and their approximation by unitary eta-invariants, Math. Proc. Cambridge Philos. Soc. 138 (2005) 327
,[17] New topologically slice knots, Geom. Topol. 9 (2005) 2129
, ,[18] Configurations of surfaces in $4$–manifolds, Trans. Amer. Math. Soc. 264 (1981) 353
,[19] Some Interesting Non-Ribbon Knots, Abstracts of papers presented to Amer. Math. Soc. 2 (1981) 448
,[20] Slice knots in $S^{3}$, Quart. J. Math. Oxford Ser. $(2)$ 34 (1983) 305
,[21] The Casson–Gordon invariant and link concordance, Topology 31 (1992) 475
, ,[22] Some aspects of classical knot theory, from: "Knot theory (Proc. Sem., Plans-sur-Bex, 1977)" (editor J C Hausmann), Lecture Notes in Math. 685, Springer (1978) 1
,[23] Higher-order polynomial invariants of $3$–manifolds giving lower bounds for the Thurston norm, Topology 44 (2005) 895
,[24] Homology cobordism invariants and the Cochran–Orr–Teichner filtration of the link concordance group, Geom. Topol. 12 (2008) 387
,[25] A simple proof that the concordance group of algebraically slice knots is infinitely generated, Proc. Amer. Math. Soc. 83 (1981) 189
,[26] Filtration of the classical knot concordance group and Casson–Gordon invariants, Math. Proc. Cambridge Philos. Soc. 137 (2004) 293
,[27] Symmetric unions and ribbon knots, Osaka J. Math. 37 (2000) 537
,[28] Higher-order linking forms for $3$–manifolds, preprint
,[29] Higher-order linking forms for knots, Comment. Math. Helv. 81 (2006) 755
,[30] An obstruction to slicing knots using the eta invariant, Math. Proc. Cambridge Philos. Soc. 128 (2000) 301
,[31] Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969) 229
,[32] Link invariants via the eta invariant, Comment. Math. Helv. 69 (1994) 82
,[33] Cobordism of satellite knots, from: "Four-manifold theory (Durham, N.H., 1982)" (editors C Gordon, R Kirby), Contemp. Math. 35, Amer. Math. Soc. (1984) 327
,[34] Knots which are not concordant to their reverses, Quart. J. Math. Oxford Ser. $(2)$ 34 (1983) 323
,[35] Links not concordant to boundary links, Proc. Amer. Math. Soc. 110 (1990) 1129
,[36] Order 2 algebraically slice knots, from: "Proceedings of the Kirbyfest (Berkeley, CA, 1998)" (editors J Hass, M Scharlemann), Geom. Topol. Monogr. 2, Geom. Topol. Publ. (1999) 335
,[37] Infinite order amphicheiral knots, Algebr. Geom. Topol. 1 (2001) 231
,[38] A survey of classical knot concordance, from: "Handbook of knot theory" (editors W Menasco, M Thistlethwaite), Elsevier (2005) 319
,[39] Abelian invariants of satellite knots, from: "Geometry and topology (College Park, Md., 1983/84)" (editors J Alexander, J Harer), Lecture Notes in Math. 1167, Springer (1985) 217
, ,[40] Various $L^2$–signatures and a topological $L^2$–signature theorem, from: "High-dimensional manifold topology" (editors F T Farrell, W Lück), World Sci. Publ. (2003) 362
, ,[41] The algebraic structure of group rings, Pure and Applied Math., Wiley-Interscience (1977)
,[42] Rings of quotients. An introduction to methods of ring theory, Die Grund. der Math. Wissenschaften 217, Springer (1975)
,[43] Unraveling the integral knot concordance group, Mem. Amer. Math. Soc. 12 (1977)
,[44] Surgery on compact manifolds, Math. Surveys and Monogr. 69, Amer. Math. Soc. (1999)
,Cité par Sources :