Snowflake groups, Perron–Frobenius eigenvalues and isoperimetric spectra
Geometry & topology, Tome 13 (2009) no. 1, pp. 141-187.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

The k–dimensional Dehn (or isoperimetric) function of a group bounds the volume of efficient ball-fillings of k–spheres mapped into k–connected spaces on which the group acts properly and cocompactly; the bound is given as a function of the volume of the sphere. We advance significantly the observed range of behavior for such functions. First, to each nonnegative integer matrix P and positive rational number r, we associate a finite, aspherical 2–complex Xr,P and determine the Dehn function of its fundamental group Gr,P in terms of r and the Perron–Frobenius eigenvalue of P. The range of functions obtained includes δ(x) = xs, where s [2,) is arbitrary. Next, special features of the groups Gr,P allow us to construct iterated multiple HNN extensions which exhibit similar isoperimetric behavior in higher dimensions. In particular, for each positive integer k and rational s (k + 1)k, there exists a group with k–dimensional Dehn function xs. Similar isoperimetric inequalities are obtained for fillings modeled on arbitrary manifold pairs (M,M) in addition to (Bk+1,Sk).

DOI : 10.2140/gt.2009.13.141
Keywords: Dehn function, isoperimetric inequality, filling invariant, isoperimetric spectrum, high dimensional Dehn function, subgroup distortion

Brady, Noel 1 ; Bridson, Martin R 2 ; Forester, Max 1 ; Shankar, Krishnan 1

1 Mathematics Department, University of Oklahoma, Norman, OK 73019, USA
2 Mathematical Institute, 24-29 St Giles’, Oxford, OX1 3LB, UK
@article{GT_2009_13_1_a4,
     author = {Brady, Noel and Bridson, Martin R and Forester, Max and Shankar, Krishnan},
     title = {Snowflake groups, {Perron{\textendash}Frobenius} eigenvalues and isoperimetric spectra},
     journal = {Geometry & topology},
     pages = {141--187},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2009},
     doi = {10.2140/gt.2009.13.141},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.141/}
}
TY  - JOUR
AU  - Brady, Noel
AU  - Bridson, Martin R
AU  - Forester, Max
AU  - Shankar, Krishnan
TI  - Snowflake groups, Perron–Frobenius eigenvalues and isoperimetric spectra
JO  - Geometry & topology
PY  - 2009
SP  - 141
EP  - 187
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.141/
DO  - 10.2140/gt.2009.13.141
ID  - GT_2009_13_1_a4
ER  - 
%0 Journal Article
%A Brady, Noel
%A Bridson, Martin R
%A Forester, Max
%A Shankar, Krishnan
%T Snowflake groups, Perron–Frobenius eigenvalues and isoperimetric spectra
%J Geometry & topology
%D 2009
%P 141-187
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.141/
%R 10.2140/gt.2009.13.141
%F GT_2009_13_1_a4
Brady, Noel; Bridson, Martin R; Forester, Max; Shankar, Krishnan. Snowflake groups, Perron–Frobenius eigenvalues and isoperimetric spectra. Geometry & topology, Tome 13 (2009) no. 1, pp. 141-187. doi : 10.2140/gt.2009.13.141. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.141/

[1] J M Alonso, W A Bogley, R M Burton, S J Pride, X Wang, Second order Dehn functions of groups, Quart. J. Math. Oxford Ser. (2) 49 (1998) 1

[2] J M Alonso, X Wang, S J Pride, Higher-dimensional isoperimetric (or Dehn) functions of groups, J. Group Theory 2 (1999) 81

[3] N Brady, M R Bridson, There is only one gap in the isoperimetric spectrum, Geom. Funct. Anal. 10 (2000) 1053

[4] N. Brady, M. Forester, Density of isoperimetric spectra, Preprint (2008)

[5] M R Bridson, The geometry of the word problem, from: "Invitations to geometry and topology", Oxf. Grad. Texts Math. 7, Oxford Univ. Press (2002) 29

[6] M R Bridson, Polynomial Dehn functions and the length of asynchronously automatic structures, Proc. London Math. Soc. (3) 85 (2002) 441

[7] S Buoncristiano, C P Rourke, B J Sanderson, A geometric approach to homology theory, 18, Cambridge University Press (1976)

[8] J Burillo, Lower bounds of isoperimetric functions for nilpotent groups, from: "Geometric and computational perspectives on infinite groups (Minneapolis, MN and New Brunswick, NJ, 1994)", DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 25, Amer. Math. Soc. (1996) 1

[9] T Coulhon, L Saloff-Coste, Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoamericana 9 (1993) 293

[10] D B A Epstein, J W Cannon, D F Holt, S V F Levy, M S Paterson, W P Thurston, Word processing in groups, Jones and Bartlett Publ. (1992)

[11] M Gromov, Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[12] M Gromov, Asymptotic invariants of infinite groups, from: "Geometric group theory, Vol. 2 (Sussex, 1991)", London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press (1993) 1

[13] A Hatcher, K Vogtmann, Isoperimetric inequalities for automorphism groups of free groups, Pacific J. Math. 173 (1996) 425

[14] A Katok, B Hasselblatt, Introduction to the modern theory of dynamical systems, 54, Cambridge University Press (1995)

[15] A Y Ol’Shanskii, Groups with quadratic-non-quadratic Dehn functions, Internat. J. Algebra Comput. 17 (2007) 401

[16] A Y Ol’Shanskii, M V Sapir, Groups with small Dehn functions and bipartite chord diagrams, Geom. Funct. Anal. 16 (2006) 1324

[17] P Papasoglu, Isodiametric and isoperimetric inequalities for complexes and groups, J. London Math. Soc. (2) 62 (2000) 97

[18] M V Sapir, J C Birget, E Rips, Isoperimetric and isodiametric functions of groups, Ann. of Math. (2) 156 (2002) 345

[19] E Seneta, Nonnegative matrices and Markov chains, , Springer (1981)

[20] N T Varopoulos, L Saloff-Coste, T Coulhon, Analysis and geometry on groups, 100, Cambridge University Press (1992)

[21] X. Wang, Second order Dehn functions of finitely presented groups and monoids, PhD thesis, University of Glasgow (1996)

[22] X Wang, S J Pride, Second order Dehn functions and HNN-extensions, J. Austral. Math. Soc. Ser. A 67 (1999) 272

[23] R. Young, A note on higher-order filling functions

Cité par Sources :