Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
The –dimensional Dehn (or isoperimetric) function of a group bounds the volume of efficient ball-fillings of –spheres mapped into –connected spaces on which the group acts properly and cocompactly; the bound is given as a function of the volume of the sphere. We advance significantly the observed range of behavior for such functions. First, to each nonnegative integer matrix and positive rational number , we associate a finite, aspherical –complex and determine the Dehn function of its fundamental group in terms of and the Perron–Frobenius eigenvalue of . The range of functions obtained includes , where is arbitrary. Next, special features of the groups allow us to construct iterated multiple HNN extensions which exhibit similar isoperimetric behavior in higher dimensions. In particular, for each positive integer and rational , there exists a group with –dimensional Dehn function . Similar isoperimetric inequalities are obtained for fillings modeled on arbitrary manifold pairs in addition to .
Brady, Noel 1 ; Bridson, Martin R 2 ; Forester, Max 1 ; Shankar, Krishnan 1
@article{GT_2009_13_1_a4, author = {Brady, Noel and Bridson, Martin R and Forester, Max and Shankar, Krishnan}, title = {Snowflake groups, {Perron{\textendash}Frobenius} eigenvalues and isoperimetric spectra}, journal = {Geometry & topology}, pages = {141--187}, publisher = {mathdoc}, volume = {13}, number = {1}, year = {2009}, doi = {10.2140/gt.2009.13.141}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.141/} }
TY - JOUR AU - Brady, Noel AU - Bridson, Martin R AU - Forester, Max AU - Shankar, Krishnan TI - Snowflake groups, Perron–Frobenius eigenvalues and isoperimetric spectra JO - Geometry & topology PY - 2009 SP - 141 EP - 187 VL - 13 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.141/ DO - 10.2140/gt.2009.13.141 ID - GT_2009_13_1_a4 ER -
%0 Journal Article %A Brady, Noel %A Bridson, Martin R %A Forester, Max %A Shankar, Krishnan %T Snowflake groups, Perron–Frobenius eigenvalues and isoperimetric spectra %J Geometry & topology %D 2009 %P 141-187 %V 13 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.141/ %R 10.2140/gt.2009.13.141 %F GT_2009_13_1_a4
Brady, Noel; Bridson, Martin R; Forester, Max; Shankar, Krishnan. Snowflake groups, Perron–Frobenius eigenvalues and isoperimetric spectra. Geometry & topology, Tome 13 (2009) no. 1, pp. 141-187. doi : 10.2140/gt.2009.13.141. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.141/
[1] Second order Dehn functions of groups, Quart. J. Math. Oxford Ser. (2) 49 (1998) 1
, , , , ,[2] Higher-dimensional isoperimetric (or Dehn) functions of groups, J. Group Theory 2 (1999) 81
, , ,[3] There is only one gap in the isoperimetric spectrum, Geom. Funct. Anal. 10 (2000) 1053
, ,[4] Density of isoperimetric spectra, Preprint (2008)
, ,[5] The geometry of the word problem, from: "Invitations to geometry and topology", Oxf. Grad. Texts Math. 7, Oxford Univ. Press (2002) 29
,[6] Polynomial Dehn functions and the length of asynchronously automatic structures, Proc. London Math. Soc. (3) 85 (2002) 441
,[7] A geometric approach to homology theory, 18, Cambridge University Press (1976)
, , ,[8] Lower bounds of isoperimetric functions for nilpotent groups, from: "Geometric and computational perspectives on infinite groups (Minneapolis, MN and New Brunswick, NJ, 1994)", DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 25, Amer. Math. Soc. (1996) 1
,[9] Isopérimétrie pour les groupes et les variétés, Rev. Mat. Iberoamericana 9 (1993) 293
, ,[10] Word processing in groups, Jones and Bartlett Publ. (1992)
, , , , , ,[11] Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75
,[12] Asymptotic invariants of infinite groups, from: "Geometric group theory, Vol. 2 (Sussex, 1991)", London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press (1993) 1
,[13] Isoperimetric inequalities for automorphism groups of free groups, Pacific J. Math. 173 (1996) 425
, ,[14] Introduction to the modern theory of dynamical systems, 54, Cambridge University Press (1995)
, ,[15] Groups with quadratic-non-quadratic Dehn functions, Internat. J. Algebra Comput. 17 (2007) 401
,[16] Groups with small Dehn functions and bipartite chord diagrams, Geom. Funct. Anal. 16 (2006) 1324
, ,[17] Isodiametric and isoperimetric inequalities for complexes and groups, J. London Math. Soc. (2) 62 (2000) 97
,[18] Isoperimetric and isodiametric functions of groups, Ann. of Math. (2) 156 (2002) 345
, , ,[19] Nonnegative matrices and Markov chains, , Springer (1981)
,[20] Analysis and geometry on groups, 100, Cambridge University Press (1992)
, , ,[21] Second order Dehn functions of finitely presented groups and monoids, PhD thesis, University of Glasgow (1996)
,[22] Second order Dehn functions and HNN-extensions, J. Austral. Math. Soc. Ser. A 67 (1999) 272
, ,[23] A note on higher-order filling functions
,Cité par Sources :