The Seiberg–Witten equations and the Weinstein conjecture II: More closed integral curves of the Reeb vector field
Geometry & topology, Tome 13 (2009) no. 3, pp. 1337-1417.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let M denote a compact, orientable 3–dimensional manifold and let a denote a contact 1–form on M; thus a da is nowhere zero. This article explains how the Seiberg–Witten Floer homology groups as defined for any given Spin structure on M give closed, integral curves of the vector field that generates the kernel of da.

DOI : 10.2140/gt.2009.13.1337

Taubes, Clifford Henry 1

1 Department of Mathematics, Harvard University, Cambridge, MA 02138, USA
@article{GT_2009_13_3_a3,
     author = {Taubes, Clifford Henry},
     title = {The {Seiberg{\textendash}Witten} equations and the {Weinstein} conjecture {II:} {More} closed integral curves of the {Reeb} vector field},
     journal = {Geometry & topology},
     pages = {1337--1417},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2009},
     doi = {10.2140/gt.2009.13.1337},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1337/}
}
TY  - JOUR
AU  - Taubes, Clifford Henry
TI  - The Seiberg–Witten equations and the Weinstein conjecture II: More closed integral curves of the Reeb vector field
JO  - Geometry & topology
PY  - 2009
SP  - 1337
EP  - 1417
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1337/
DO  - 10.2140/gt.2009.13.1337
ID  - GT_2009_13_3_a3
ER  - 
%0 Journal Article
%A Taubes, Clifford Henry
%T The Seiberg–Witten equations and the Weinstein conjecture II: More closed integral curves of the Reeb vector field
%J Geometry & topology
%D 2009
%P 1337-1417
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1337/
%R 10.2140/gt.2009.13.1337
%F GT_2009_13_3_a3
Taubes, Clifford Henry. The Seiberg–Witten equations and the Weinstein conjecture II: More closed integral curves of the Reeb vector field. Geometry & topology, Tome 13 (2009) no. 3, pp. 1337-1417. doi : 10.2140/gt.2009.13.1337. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1337/

[1] C Abbas, K Cieliebak, H Hofer, The Weinstein conjecture for planar contact structures in dimension three, Comment. Math. Helv. 80 (2005) 771

[2] S K Donaldson, Floer homology groups in Yang–Mills theory, Cambridge Tracts in Mathematics 147, Cambridge University Press (2002)

[3] Y Eliashberg, Contact $3$–manifolds twenty years since J Martinet's work, Ann. Inst. Fourier (Grenoble) 42 (1992) 165

[4] H Hofer, Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993) 515

[5] T Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer New York, New York (1966)

[6] P B Kronheimer, T S Mrowka, Monopoles and contact structures, Invent. Math. 130 (1997) 209

[7] P B Kronheimer, T S Mrowka, Monopoles and three-manifolds, New Mathematical Monographs 10, Cambridge University Press (2007)

[8] G Meng, C H Taubes, $SW$ and Milnor torsion, Math. Res. Lett. 3 (1996) 661

[9] T Mrowka, Y Rollin, Legendrian knots and monopoles, Algebr. Geom. Topol. 6 (2006) 1

[10] C H Taubes, $SW \Rightarrow Gr$: From Seiberg–Witten equations to pseudo-holomorphic curves in Seiberg Witten and Gromov invariants for symplectic 4–manifolds, International Press, Somerville MA (2005)

[11] C H Taubes, Asymptotic spectral flow for Dirac operators, Comm. Anal. Geom. 15 (2007) 569

[12] C H Taubes, The Seiberg-Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007) 2117

Cité par Sources :