Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let denote a compact, orientable 3–dimensional manifold and let a denote a contact 1–form on ; thus a da is nowhere zero. This article explains how the Seiberg–Witten Floer homology groups as defined for any given structure on give closed, integral curves of the vector field that generates the kernel of .
@article{GT_2009_13_3_a3, author = {Taubes, Clifford Henry}, title = {The {Seiberg{\textendash}Witten} equations and the {Weinstein} conjecture {II:} {More} closed integral curves of the {Reeb} vector field}, journal = {Geometry & topology}, pages = {1337--1417}, publisher = {mathdoc}, volume = {13}, number = {3}, year = {2009}, doi = {10.2140/gt.2009.13.1337}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1337/} }
TY - JOUR AU - Taubes, Clifford Henry TI - The Seiberg–Witten equations and the Weinstein conjecture II: More closed integral curves of the Reeb vector field JO - Geometry & topology PY - 2009 SP - 1337 EP - 1417 VL - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1337/ DO - 10.2140/gt.2009.13.1337 ID - GT_2009_13_3_a3 ER -
%0 Journal Article %A Taubes, Clifford Henry %T The Seiberg–Witten equations and the Weinstein conjecture II: More closed integral curves of the Reeb vector field %J Geometry & topology %D 2009 %P 1337-1417 %V 13 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1337/ %R 10.2140/gt.2009.13.1337 %F GT_2009_13_3_a3
Taubes, Clifford Henry. The Seiberg–Witten equations and the Weinstein conjecture II: More closed integral curves of the Reeb vector field. Geometry & topology, Tome 13 (2009) no. 3, pp. 1337-1417. doi : 10.2140/gt.2009.13.1337. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1337/
[1] The Weinstein conjecture for planar contact structures in dimension three, Comment. Math. Helv. 80 (2005) 771
, , ,[2] Floer homology groups in Yang–Mills theory, Cambridge Tracts in Mathematics 147, Cambridge University Press (2002)
,[3] Contact $3$–manifolds twenty years since J Martinet's work, Ann. Inst. Fourier (Grenoble) 42 (1992) 165
,[4] Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993) 515
,[5] Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer New York, New York (1966)
,[6] Monopoles and contact structures, Invent. Math. 130 (1997) 209
, ,[7] Monopoles and three-manifolds, New Mathematical Monographs 10, Cambridge University Press (2007)
, ,[8] $SW$ and Milnor torsion, Math. Res. Lett. 3 (1996) 661
, ,[9] Legendrian knots and monopoles, Algebr. Geom. Topol. 6 (2006) 1
, ,[10] $SW \Rightarrow Gr$: From Seiberg–Witten equations to pseudo-holomorphic curves in Seiberg Witten and Gromov invariants for symplectic 4–manifolds, International Press, Somerville MA (2005)
,[11] Asymptotic spectral flow for Dirac operators, Comm. Anal. Geom. 15 (2007) 569
,[12] The Seiberg-Witten equations and the Weinstein conjecture, Geom. Topol. 11 (2007) 2117
,Cité par Sources :