Rigidity of polyhedral surfaces, II
Geometry & topology, Tome 13 (2009) no. 3, pp. 1265-1312 Cet article a éte moissonné depuis la source Mathematical Sciences Publishers

Voir la notice de l'article

We study the rigidity of polyhedral surfaces using variational principles. The action functionals are derived from the cosine laws. The main focus of this paper is on the cosine law for a nontriangular region bounded by three possibly disjoint geodesics. Several of these cosine laws were first discovered and used by Fenchel and Nielsen. By studying the derivative of the cosine laws, we discover a uniform approach to several variational principles on polyhedral surfaces with or without boundary. As a consequence, the work of Penner, Bobenko and Springborn and Thurston on rigidity of polyhedral surfaces and circle patterns are extended to a very general context.

A correction was submitted on 04 Dec 2024 and posted online on 25 Aug 2025.

DOI : 10.2140/gt.2009.13.1265
Keywords: derivative cosine law, energy function, variational principle, edge invariant, circle packing metric, circle pattern metric, polyhedral surface, rigidity, metric, curvature

Guo, Ren 1 ; Luo, Feng 2

1 School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA
2 The Center of Mathematical Science, Zhejiang University, Hangzhou, Zhejiang 310027, China, and, Department of Mathematics, Rutgers University, Piscataway, NJ 08854, USA
@article{10_2140_gt_2009_13_1265,
     author = {Guo, Ren and Luo, Feng},
     title = {Rigidity of polyhedral surfaces, {II}},
     journal = {Geometry & topology},
     pages = {1265--1312},
     year = {2009},
     volume = {13},
     number = {3},
     doi = {10.2140/gt.2009.13.1265},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1265/}
}
TY  - JOUR
AU  - Guo, Ren
AU  - Luo, Feng
TI  - Rigidity of polyhedral surfaces, II
JO  - Geometry & topology
PY  - 2009
SP  - 1265
EP  - 1312
VL  - 13
IS  - 3
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1265/
DO  - 10.2140/gt.2009.13.1265
ID  - 10_2140_gt_2009_13_1265
ER  - 
%0 Journal Article
%A Guo, Ren
%A Luo, Feng
%T Rigidity of polyhedral surfaces, II
%J Geometry & topology
%D 2009
%P 1265-1312
%V 13
%N 3
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1265/
%R 10.2140/gt.2009.13.1265
%F 10_2140_gt_2009_13_1265
Guo, Ren; Luo, Feng. Rigidity of polyhedral surfaces, II. Geometry & topology, Tome 13 (2009) no. 3, pp. 1265-1312. doi: 10.2140/gt.2009.13.1265

[1] A I Bobenko, B A Springborn, Variational principles for circle patterns and Koebe’s theorem, Trans. Amer. Math. Soc. 356 (2004) 659 | DOI

[2] W Brägger, Kreispackungen und Triangulierungen, Enseign. Math. 38 (1992) 201

[3] B Chow, F Luo, Combinatorial Ricci flows on surfaces, J. Differential Geom. 63 (2003) 97

[4] Y Colin De Verdière, Un principe variationnel pour les empilements de cercles, Invent. Math. 104 (1991) 655 | DOI

[5] W Fenchel, J Nielsen, Discontinuous groups of isometries in the hyperbolic plane, 29, Walter de Gruyter Co. (2003)

[6] R Guo, On parameterizations of Teichmüller spaces of surfaces with boundary, to appear in J. Differential Geom.

[7] G P Hazel, Triangulating Teichmüller space using the Ricci flow, PhD thesis, University of California San Diego (2004)

[8] G Leibon, Characterizing the Delaunay decompositions of compact hyperbolic surfaces, Geom. Topol. 6 (2002) 361 | DOI

[9] F Luo, Rigidity of polyhedral surfaces

[10] F Luo, A characterization of spherical polyhedral surfaces, J. Differential Geom. 74 (2006) 407

[11] F Luo, On Teichmüller spaces of surfaces with boundary, Duke Math. J. 139 (2007) 463 | DOI

[12] G Mondello, Triangulated Riemann surfaces with boundary and the Weil–Petersson Poisson structure, J. Differential Geom. 81 (2009) 391

[13] R C Penner, The decorated Teichmüller space of punctured surfaces, Comm. Math. Phys. 113 (1987) 299

[14] I Rivin, Euclidean structures on simplicial surfaces and hyperbolic volume, Ann. of Math. 139 (1994) 553 | DOI

[15] J M Schlenker, Circle patterns on singular surfaces, Discrete Comput. Geom. 40 (2008) 47 | DOI

[16] K Stephenson, Introduction to circle packing: The theory of discrete analytic functions, Cambridge Univ. Press (2005)

[17] W Thurston, The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Lecture Notes (1979)

[18] W P Thurston, Three-dimensional geometry and topology. Vol. 1, 35, Princeton University Press (1997)

Cité par Sources :