Infinite groups with fixed point properties
Geometry & topology, Tome 13 (2009) no. 3, pp. 1229-1263.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We construct finitely generated groups with strong fixed point properties. Let Xac be the class of Hausdorff spaces of finite covering dimension which are mod–p acyclic for at least one prime p. We produce the first examples of infinite finitely generated groups Q with the property that for any action of Q on any X Xac, there is a global fixed point. Moreover, Q may be chosen to be simple and to have Kazhdan’s property (T). We construct a finitely presented infinite group P that admits no nontrivial action on any manifold in Xac. In building Q, we exhibit new families of hyperbolic groups: for each n 1 and each prime p, we construct a nonelementary hyperbolic group Gn,p which has a generating set of size n + 2, any proper subset of which generates a finite p–group.

DOI : 10.2140/gt.2009.13.1229
Keywords: acyclic spaces, Kazhdan's property T, relatively hyperbolic group, simplices of groups

Arzhantseva, Goulnara 1 ; Bridson, Martin R 2 ; Januszkiewicz, Tadeusz 3 ; Leary, Ian J 4 ; Minasyan, Ashot 5 ; Światkowski, Jacek 6

1 Université de Genève, Section de Mathématiques, 2-4 rue du Lièvre, Case postale 64, 1211 Genève 4, Switzerland
2 Mathematical Institute, 24-29 St Giles’, Oxford, UK
3 Department of Mathematics, The Ohio State University, 231 W 18th Ave,, Columbus, OH 43210, USA, and The Mathematical Institute of Polish Academy of Sciences, On leave from Instytut Matematyczny, Uniwersytet Wrocławski
4 Department of Mathematics, The Ohio State University, 231 W 18th Ave, Columbus, OH 43210, USA
5 School of Mathematics, University of Southampton, Highfield, Southampton, SO17 1BJ, United Kingdom
6 Instytut Matematyczny, Uniwersytet Wroclawski, pl. Grunwaldzki 2/4, 50-384 Wroclaw, Poland
@article{GT_2009_13_3_a0,
     author = {Arzhantseva, Goulnara and Bridson, Martin R and Januszkiewicz, Tadeusz and Leary, Ian J and Minasyan, Ashot and \'Swiatkowski, Jacek},
     title = {Infinite groups with fixed point properties},
     journal = {Geometry & topology},
     pages = {1229--1263},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2009},
     doi = {10.2140/gt.2009.13.1229},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1229/}
}
TY  - JOUR
AU  - Arzhantseva, Goulnara
AU  - Bridson, Martin R
AU  - Januszkiewicz, Tadeusz
AU  - Leary, Ian J
AU  - Minasyan, Ashot
AU  - Światkowski, Jacek
TI  - Infinite groups with fixed point properties
JO  - Geometry & topology
PY  - 2009
SP  - 1229
EP  - 1263
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1229/
DO  - 10.2140/gt.2009.13.1229
ID  - GT_2009_13_3_a0
ER  - 
%0 Journal Article
%A Arzhantseva, Goulnara
%A Bridson, Martin R
%A Januszkiewicz, Tadeusz
%A Leary, Ian J
%A Minasyan, Ashot
%A Światkowski, Jacek
%T Infinite groups with fixed point properties
%J Geometry & topology
%D 2009
%P 1229-1263
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1229/
%R 10.2140/gt.2009.13.1229
%F GT_2009_13_3_a0
Arzhantseva, Goulnara; Bridson, Martin R; Januszkiewicz, Tadeusz; Leary, Ian J; Minasyan, Ashot; Światkowski, Jacek. Infinite groups with fixed point properties. Geometry & topology, Tome 13 (2009) no. 3, pp. 1229-1263. doi : 10.2140/gt.2009.13.1229. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1229/

[1] G Arzhantseva, A Minasyan, D Osin, The SQ-universality and residual properties of relatively hyperbolic groups, J. Algebra 315 (2007) 165

[2] A K Barnhill, The $\mathrm{FA}_n$ conjecture for Coxeter groups, Algebr. Geom. Topol. 6 (2006) 2117

[3] G E Bredon, Introduction to compact transformation groups, Pure and Applied Math. 46, Academic Press (1972)

[4] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grund. der Math. Wissenschaften 319, Springer (1999)

[5] M R Bridson, K Vogtmann, Actions of automorphism groups of free groups on homology spheres and acyclic manifolds

[6] K S Brown, R Geoghegan, An infinite-dimensional torsion-free $\mathrm{FP}_{\infty }$ group, Invent. Math. 77 (1984) 367

[7] I L Chatterji, M Kassabov, New examples of finitely presented groups with strong fixed point properties

[8] B Farb, Group actions and Helly's theorem

[9] D Fisher, L Silberman, Groups not acting on manifolds, Int. Math. Res. Not. (2008)

[10] A Hatcher, Algebraic topology, Cambridge Univ. Press (2002)

[11] G Higman, Finitely presented infinite simple groups, Notes on Pure Math. 8, Dept. of Math., IAS Australian Nat. Univ., Canberra (1974)

[12] T Januszkiewicz, J Światkowski, Hyperbolic Coxeter groups of large dimension, Comment. Math. Helv. 78 (2003) 555

[13] T Januszkiewicz, J Światkowski, Simplicial nonpositive curvature, Publ. Math. Inst. Hautes Études Sci. (2006) 1

[14] T Januszkiewicz, J Światkowski, Filling invariants of systolic complexes and groups, Geom. Topol. 11 (2007) 727

[15] P H Kropholler, On groups of type $(\mathrm{FP})_\infty$, J. Pure Appl. Algebra 90 (1993) 55

[16] I J Leary, On finite subgroups of groups of type VF, Geom. Topol. 9 (2005) 1953

[17] R C Lyndon, P E Schupp, Combinatorial group theory, Ergebnisse der Math. und ihrer Grenzgebiete 89, Springer (1977)

[18] L N Mann, J C Su, Actions of elementary $p$–groups on manifolds, Trans. Amer. Math. Soc. 106 (1963) 115

[19] A Minasyan, On residualizing homomorphisms preserving quasiconvexity, Comm. Algebra 33 (2005) 2423

[20] A Y Ol′Shanskiĭ, On residualing homomorphisms and $G$–subgroups of hyperbolic groups, Internat. J. Algebra Comput. 3 (1993) 365

[21] D Osajda, Connectedness at infinity of systolic complexes and groups, Groups Geom. Dyn. 1 (2007) 183

[22] D Osajda, Ideal boundary of $7$–systolic complexes and groups, Algebr. Geom. Topol. 8 (2008) 81

[23] D V Osin, Weakly amenable groups, from: "Computational and statistical group theory (Las Vegas, NV/Hoboken, NJ, 2001)" (editors R Gilman, V Shpilrain, A G Myasnikov), Contemp. Math. 298, Amer. Math. Soc. (2002) 105

[24] D V Osin, Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Amer. Math. Soc. 179, 843 (2006)

[25] A Robert, Introduction to the representation theory of compact and locally compact groups, London Math. Soc. Lecture Note Ser. 80, Cambridge Univ. Press (1983)

[26] C E Röver, Constructing finitely presented simple groups that contain Grigorchuk groups, J. Algebra 220 (1999) 284

[27] P A Smith, Permutable periodic transformations, Proc. Nat. Acad. Sci. U. S. A. 30 (1944) 105

[28] R J Thompson, Embeddings into finitely generated simple groups which preserve the word problem, from: "Word problems, II (Conf. on Decision Problems in Algebra, Oxford, 1976)" (editors S I Adian, W W Boone, G Higman), Stud. Logic Foundations Math. 95, North-Holland (1980) 401

[29] S Weinberger, Some remarks inspired by the $C^0$ Zimmer program, Preprint (2008)

Cité par Sources :