The homotopy type of the space of symplectic balls in rational ruled 4–manifolds
Geometry & topology, Tome 13 (2009) no. 2, pp. 1177-1227.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let M := (M4,ω) be a 4–dimensional rational ruled symplectic manifold and denote by wM its Gromov width. Let Embω(B4(c),M) be the space of symplectic embeddings of the standard ball of radius r, B4(c) 4 (parametrized by its capacity c := πr2), into (M,ω). By the work of Lalonde and Pinsonnault [Duke Math. J. 122 (2004) 347–397], we know that there exists a critical capacity 0 < ccrit wM such that, for all 0 < c < ccrit, the embedding space Embω(B4(c),M) is homotopy equivalent to the space of symplectic frames SFr(M). We also know that the homotopy type of Embω(B4(c),M) changes when c reaches ccrit and that it remains constant for all c such that ccrit c < wM. In this paper, we compute the rational homotopy type, the minimal model and the cohomology with rational coefficients of Embω(B4(c),M) in the remaining case of c with ccrit c < wM. In particular, we show that it does not have the homotopy type of a finite CW–complex. Some of the key points in the argument are the calculation of the rational homotopy type of the classifying space of the symplectomorphism group of the blow up of M, its comparison with the group corresponding to M and the proof that the space of compatible integrable complex structures on the blow up is weakly contractible.

DOI : 10.2140/gt.2009.13.1177
Keywords: rational homotopy type, symplectic embeddings of balls, rational symplectic $4$–manifold, group of symplectic diffeomorphisms

Anjos, Sílvia 1 ; Lalonde, François 2 ; Pinsonnault, Martin 3

1 Centro de Análise Matemática, Geometria e Sistemas Dinâmicos, Departamento de Matemática, Instituto Superior Técnico, Lisboa, Portugal
2 Université de Montréal, Montréal, Canada H3C 3J7
3 The University of Western Ontario, London, Ontario, Canada N6A 3K7
@article{GT_2009_13_2_a16,
     author = {Anjos, S{\'\i}lvia and Lalonde, Fran\c{c}ois and Pinsonnault, Martin},
     title = {The homotopy type of the space of symplectic balls in rational ruled 4{\textendash}manifolds},
     journal = {Geometry & topology},
     pages = {1177--1227},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2009},
     doi = {10.2140/gt.2009.13.1177},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1177/}
}
TY  - JOUR
AU  - Anjos, Sílvia
AU  - Lalonde, François
AU  - Pinsonnault, Martin
TI  - The homotopy type of the space of symplectic balls in rational ruled 4–manifolds
JO  - Geometry & topology
PY  - 2009
SP  - 1177
EP  - 1227
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1177/
DO  - 10.2140/gt.2009.13.1177
ID  - GT_2009_13_2_a16
ER  - 
%0 Journal Article
%A Anjos, Sílvia
%A Lalonde, François
%A Pinsonnault, Martin
%T The homotopy type of the space of symplectic balls in rational ruled 4–manifolds
%J Geometry & topology
%D 2009
%P 1177-1227
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1177/
%R 10.2140/gt.2009.13.1177
%F GT_2009_13_2_a16
Anjos, Sílvia; Lalonde, François; Pinsonnault, Martin. The homotopy type of the space of symplectic balls in rational ruled 4–manifolds. Geometry & topology, Tome 13 (2009) no. 2, pp. 1177-1227. doi : 10.2140/gt.2009.13.1177. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1177/

[1] M Abreu, Topology of symplectomorphism groups of $S^2\times S^2$, Invent. Math. 131 (1998) 1

[2] M Abreu, G Granja, N Kitchloo, Compatible complex structures on symplectic rational ruled surfaces

[3] M Abreu, D Mcduff, Topology of symplectomorphism groups of rational ruled surfaces, J. Amer. Math. Soc. 13 (2000) 971

[4] S Anjos, Homotopy type of symplectomorphism groups of $S^2\times S^2$, Geom. Topol. 6 (2002) 195

[5] S Anjos, G Granja, Homotopy decomposition of a group of symplectomorphisms of $S^2\times S^2$, Topology 43 (2004) 599

[6] S Anjos, F Lalonde, The topology of the space of symplectic balls in $S^2\times S^2$, C. R. Math. Acad. Sci. Paris 345 (2007) 639

[7] P F Baum, On the cohomology of homogeneous spaces, Topology 7 (1968) 15

[8] L David, P Gauduchon, The Bochner-flat geometry of weighted projective spaces, from: "Perspectives in Riemannian geometry" (editors V Apostolov, A Dancer, N Hitchin, M Wang), CRM Proc. Lecture Notes 40, Amer. Math. Soc. (2006) 109

[9] N Kitchloo, G Laures, W S Wilson, The Morava $K$–theory of spaces related to $BO$, Adv. Math. 189 (2004) 192

[10] K Kodaira, Complex manifolds and deformation of complex structures, Grund. der Math. Wissenschaften 283, Springer (1986)

[11] F Lalonde, Isotopy of symplectic balls, Gromov's radius and the structure of ruled symplectic $4$–manifolds, Math. Ann. 300 (1994) 273

[12] F Lalonde, D Mcduff, $J$–curves and the classification of rational and ruled symplectic $4$–manifolds, from: "Contact and symplectic geometry (Cambridge, 1994)" (editor C B Thomas), Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 3

[13] F Lalonde, M Pinsonnault, The topology of the space of symplectic balls in rational $4$–manifolds, Duke Math. J. 122 (2004) 347

[14] D Mcduff, From symplectic deformation to isotopy, from: "Topics in symplectic $4$–manifolds (Irvine, CA, 1996)" (editor R J Stern), First Int. Press Lect. Ser., I, Int. Press (1998) 85

[15] D Mcduff, Almost complex structures on $S^2\times S^2$, Duke Math. J. 101 (2000) 135

[16] D Mcduff, Symplectomorphism groups and almost complex structures, from: "Essays on geometry and related topics, Vol. 1, 2" (editors É Ghys, P d l Harpe, V F R Jones, V Sergiescu, T Tsuboi), Monogr. Enseign. Math. 38, Enseignement Math. (2001) 527

[17] M Pinsonnault, Symplectomorphism groups and embeddings of balls into rational ruled $4$–manifolds, Compos. Math. 144 (2008) 787

Cité par Sources :