Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We prove that if every hyperbolic group is residually finite, then every quasi-convex subgroup of every hyperbolic group is separable. The main tool is relatively hyperbolic Dehn filling.
Agol, Ian 1 ; Groves, Daniel 2 ; Manning, Jason Fox 3
@article{GT_2009_13_2_a12, author = {Agol, Ian and Groves, Daniel and Manning, Jason Fox}, title = {Residual finiteness, {QCERF} and fillings of hyperbolic groups}, journal = {Geometry & topology}, pages = {1043--1073}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2009}, doi = {10.2140/gt.2009.13.1043}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1043/} }
TY - JOUR AU - Agol, Ian AU - Groves, Daniel AU - Manning, Jason Fox TI - Residual finiteness, QCERF and fillings of hyperbolic groups JO - Geometry & topology PY - 2009 SP - 1043 EP - 1073 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1043/ DO - 10.2140/gt.2009.13.1043 ID - GT_2009_13_2_a12 ER -
%0 Journal Article %A Agol, Ian %A Groves, Daniel %A Manning, Jason Fox %T Residual finiteness, QCERF and fillings of hyperbolic groups %J Geometry & topology %D 2009 %P 1043-1073 %V 13 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1043/ %R 10.2140/gt.2009.13.1043 %F GT_2009_13_2_a12
Agol, Ian; Groves, Daniel; Manning, Jason Fox. Residual finiteness, QCERF and fillings of hyperbolic groups. Geometry & topology, Tome 13 (2009) no. 2, pp. 1043-1073. doi : 10.2140/gt.2009.13.1043. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1043/
[1] Bounds on exceptional Dehn filling, Geom. Topol. 4 (2000) 431
,[2] Polynomial maps over finite fields and residual finiteness of mapping tori of group endomorphisms, Invent. Math. 160 (2005) 341
, ,[3] Relatively hyperbolic groups, Preprint
,[4] Finite subgroups of hyperbolic groups, Internat. J. Algebra Comput. 10 (2000) 399
,[5] Metric spaces of non-positive curvature, Grund. der Math. Wissenschaften 319, Springer (1999)
, ,[6] Widths of subgroups, Trans. Amer. Math. Soc. 350 (1998) 321
, , , ,[7] Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75
,[8] Dehn filling in relatively hyperbolic groups, Israel J. Math. 168 (2008) 317
, ,[9] Special cube complexes, Geom. Funct. Anal. 17 (2008) 1551
, ,[10] The equivalence of some residual properties of word-hyperbolic groups, J. Algebra 223 (2000) 562
, ,[11] Word hyperbolic Dehn surgery, Invent. Math. 140 (2000) 243
,[12] Subgroup separability and $3$–manifold groups, Math. Z. 207 (1991) 209
, ,[13] On homomorphisms onto finite groups (editor L J Leifman), Amer. Math. Soc. Transl., Ser. 2 119, Amer. Math. Soc. (1983)
,[14] Separation of relatively quasiconvex subgroups
, ,[15] On power subgroups of profinite groups, Trans. Amer. Math. Soc. 345 (1994) 865
,[16] A note on quasiconvexity and relative hyperbolic structures
,[17] Separable subsets of GFERF negatively curved groups, J. Algebra 304 (2006) 1090
,[18] Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Amer. Math. Soc. 179, 843 (2006)
,[19] Peripheral fillings of relatively hyperbolic groups, Invent. Math. 167 (2007) 295
,[20] The residual finiteness of negatively curved polygons of finite groups, Invent. Math. 149 (2002) 579
,Cité par Sources :