Residual finiteness, QCERF and fillings of hyperbolic groups
Geometry & topology, Tome 13 (2009) no. 2, pp. 1043-1073.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that if every hyperbolic group is residually finite, then every quasi-convex subgroup of every hyperbolic group is separable. The main tool is relatively hyperbolic Dehn filling.

DOI : 10.2140/gt.2009.13.1043
Keywords: hyperbolic group, quasiconvex subgroup, residually finite, LERF

Agol, Ian 1 ; Groves, Daniel 2 ; Manning, Jason Fox 3

1 University of California, Berkeley, 970 Evans Hall #3840, Berkeley, CA 94720-3840, USA
2 Department of Math, Stats and Comp Sci, University of Illinois at Chicago, 851 S Morgan St, Chicago, IL 60607-7045, USA
3 Department of Mathematics, SUNY at Buffalo, Buffalo, NY 14260-2900, USA
@article{GT_2009_13_2_a12,
     author = {Agol, Ian and Groves, Daniel and Manning, Jason Fox},
     title = {Residual finiteness, {QCERF} and fillings of hyperbolic groups},
     journal = {Geometry & topology},
     pages = {1043--1073},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2009},
     doi = {10.2140/gt.2009.13.1043},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1043/}
}
TY  - JOUR
AU  - Agol, Ian
AU  - Groves, Daniel
AU  - Manning, Jason Fox
TI  - Residual finiteness, QCERF and fillings of hyperbolic groups
JO  - Geometry & topology
PY  - 2009
SP  - 1043
EP  - 1073
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1043/
DO  - 10.2140/gt.2009.13.1043
ID  - GT_2009_13_2_a12
ER  - 
%0 Journal Article
%A Agol, Ian
%A Groves, Daniel
%A Manning, Jason Fox
%T Residual finiteness, QCERF and fillings of hyperbolic groups
%J Geometry & topology
%D 2009
%P 1043-1073
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1043/
%R 10.2140/gt.2009.13.1043
%F GT_2009_13_2_a12
Agol, Ian; Groves, Daniel; Manning, Jason Fox. Residual finiteness, QCERF and fillings of hyperbolic groups. Geometry & topology, Tome 13 (2009) no. 2, pp. 1043-1073. doi : 10.2140/gt.2009.13.1043. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1043/

[1] I Agol, Bounds on exceptional Dehn filling, Geom. Topol. 4 (2000) 431

[2] A Borisov, M Sapir, Polynomial maps over finite fields and residual finiteness of mapping tori of group endomorphisms, Invent. Math. 160 (2005) 341

[3] B Bowditch, Relatively hyperbolic groups, Preprint

[4] N Brady, Finite subgroups of hyperbolic groups, Internat. J. Algebra Comput. 10 (2000) 399

[5] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grund. der Math. Wissenschaften 319, Springer (1999)

[6] R Gitik, M Mitra, E Rips, M Sageev, Widths of subgroups, Trans. Amer. Math. Soc. 350 (1998) 321

[7] M Gromov, Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[8] D Groves, J F Manning, Dehn filling in relatively hyperbolic groups, Israel J. Math. 168 (2008) 317

[9] F Haglund, D T Wise, Special cube complexes, Geom. Funct. Anal. 17 (2008) 1551

[10] I Kapovich, D T Wise, The equivalence of some residual properties of word-hyperbolic groups, J. Algebra 223 (2000) 562

[11] M Lackenby, Word hyperbolic Dehn surgery, Invent. Math. 140 (2000) 243

[12] D D Long, G A Niblo, Subgroup separability and $3$–manifold groups, Math. Z. 207 (1991) 209

[13] A I Mal’Cev, On homomorphisms onto finite groups (editor L J Leifman), Amer. Math. Soc. Transl., Ser. 2 119, Amer. Math. Soc. (1983)

[14] J F Manning, E Martínez-Pedroza, Separation of relatively quasiconvex subgroups

[15] C Martínez, On power subgroups of profinite groups, Trans. Amer. Math. Soc. 345 (1994) 865

[16] E Martínez-Pedroza, A note on quasiconvexity and relative hyperbolic structures

[17] A Minasyan, Separable subsets of GFERF negatively curved groups, J. Algebra 304 (2006) 1090

[18] D V Osin, Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Amer. Math. Soc. 179, 843 (2006)

[19] D V Osin, Peripheral fillings of relatively hyperbolic groups, Invent. Math. 167 (2007) 295

[20] D T Wise, The residual finiteness of negatively curved polygons of finite groups, Invent. Math. 149 (2002) 579

Cité par Sources :