Almost filling laminations and the connectivity of ending lamination space
Geometry & topology, Tome 13 (2009) no. 2, pp. 1017-1041.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that if S is a finite type orientable surface of negative Euler characteristic which is not the 3–holed sphere, 4–holed sphere or 1–holed torus, then the space of ending laminations of S is path connected, locally path connected and cyclic.

DOI : 10.2140/gt.2009.13.1017
Keywords: lamination, connectivity, curve complex, surface

Gabai, David 1

1 Department of Mathematics, Princeton University, Princeton, NJ 08544, USA
@article{GT_2009_13_2_a11,
     author = {Gabai, David},
     title = {Almost filling laminations and the connectivity of ending lamination space},
     journal = {Geometry & topology},
     pages = {1017--1041},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2009},
     doi = {10.2140/gt.2009.13.1017},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1017/}
}
TY  - JOUR
AU  - Gabai, David
TI  - Almost filling laminations and the connectivity of ending lamination space
JO  - Geometry & topology
PY  - 2009
SP  - 1017
EP  - 1041
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1017/
DO  - 10.2140/gt.2009.13.1017
ID  - GT_2009_13_2_a11
ER  - 
%0 Journal Article
%A Gabai, David
%T Almost filling laminations and the connectivity of ending lamination space
%J Geometry & topology
%D 2009
%P 1017-1041
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1017/
%R 10.2140/gt.2009.13.1017
%F GT_2009_13_2_a11
Gabai, David. Almost filling laminations and the connectivity of ending lamination space. Geometry & topology, Tome 13 (2009) no. 2, pp. 1017-1041. doi : 10.2140/gt.2009.13.1017. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1017/

[1] B H Bowditch, Intersection numbers and the hyperbolicity of the curve complex, J. Reine Angew. Math. 598 (2006) 105

[2] R D Canary, D B A Epstein, P Green, Notes on notes of Thurston, from: "Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984)" (editor D B A Epstein), London Math. Soc. Lecture Note Ser. 111, Cambridge Univ. Press (1987) 3

[3] A Fathi, F Laudenbach, V Poenaru, editors, Travaux de Thurston sur les surfaces, Astérisque 66, Société Mathématique de France (1991) 286

[4] W Goldman, W P Thurston, Lecture notes from Boulder (1981)

[5] U Hamenstädt, Train tracks and mapping class groups I, to appear in Invent. Math.

[6] U Hamenstädt, Train tracks and the Gromov boundary of the complex of curves, from: "Spaces of Kleinian groups" (editors Y N Minsky, M Sakuma, C Series), London Math. Soc. Lecture Note Ser. 329, Cambridge Univ. Press (2006) 187

[7] W J Harvey, Boundary structure of the modular group, from: "Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (1978)" (editors I Kra, B Maskit), Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 245

[8] A Hatcher, W P Thurston, A presentation for the mapping class group of a closed orientable surface, Topology 19 (1980) 221

[9] R Kent Iv, C Leininger, Shadows of mapping class groups: capturing convex cocompactness, to appear in Geom. Funct. Anal.

[10] E Klarreich, The boundary at infinity of the curve complex and the relative mapping class group, Preprint

[11] C Leininger, M Mj, S Schleimer, Cannon–Thurston maps and the curve complex, Preprint

[12] C Leininger, S Schleimer, Connectivity of the space of ending laminations, Preprint

[13] H A Masur, Y N Minsky, Geometry of the complex of curves. I. Hyperbolicity, Invent. Math. 138 (1999) 103

[14] L Mosher, Train track expansions of measured foliations, Preprint

[15] R C Penner, J L Harer, Combinatorics of train tracks, Annals of Math. Studies 125, Princeton Univ. Press (1992)

[16] K Rafi, S Schleimer, Curve complexes with connected boundary are rigid, Preprint

[17] S Schleimer, The end of the curve complex, Preprint

[18] W P Thurston, The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Lecture Notes (1980)

[19] W P Thurston, Minimal stretch maps between hyperbolic surfaces, Unpublished preprint (1986)

[20] W P Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. $($N.S.$)$ 19 (1988) 417

[21] R L Wilder, Topology of manifolds, Amer. Math. Soc. Colloq. Publ. 32, Amer. Math. Soc. (1979)

[22] X Zhu, F Bonahon, The metric space of geodesic laminations on a surface. I, Geom. Topol. 8 (2004) 539

Cité par Sources :