Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that if is a finite type orientable surface of negative Euler characteristic which is not the –holed sphere, –holed sphere or –holed torus, then the space of ending laminations of is path connected, locally path connected and cyclic.
Gabai, David 1
@article{GT_2009_13_2_a11, author = {Gabai, David}, title = {Almost filling laminations and the connectivity of ending lamination space}, journal = {Geometry & topology}, pages = {1017--1041}, publisher = {mathdoc}, volume = {13}, number = {2}, year = {2009}, doi = {10.2140/gt.2009.13.1017}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1017/} }
TY - JOUR AU - Gabai, David TI - Almost filling laminations and the connectivity of ending lamination space JO - Geometry & topology PY - 2009 SP - 1017 EP - 1041 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1017/ DO - 10.2140/gt.2009.13.1017 ID - GT_2009_13_2_a11 ER -
Gabai, David. Almost filling laminations and the connectivity of ending lamination space. Geometry & topology, Tome 13 (2009) no. 2, pp. 1017-1041. doi : 10.2140/gt.2009.13.1017. http://geodesic.mathdoc.fr/articles/10.2140/gt.2009.13.1017/
[1] Intersection numbers and the hyperbolicity of the curve complex, J. Reine Angew. Math. 598 (2006) 105
,[2] Notes on notes of Thurston, from: "Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984)" (editor D B A Epstein), London Math. Soc. Lecture Note Ser. 111, Cambridge Univ. Press (1987) 3
, , ,[3] Travaux de Thurston sur les surfaces, Astérisque 66, Société Mathématique de France (1991) 286
, , , editors,[4] Lecture notes from Boulder (1981)
, ,[5] Train tracks and mapping class groups I, to appear in Invent. Math.
,[6] Train tracks and the Gromov boundary of the complex of curves, from: "Spaces of Kleinian groups" (editors Y N Minsky, M Sakuma, C Series), London Math. Soc. Lecture Note Ser. 329, Cambridge Univ. Press (2006) 187
,[7] Boundary structure of the modular group, from: "Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference (1978)" (editors I Kra, B Maskit), Ann. of Math. Stud. 97, Princeton Univ. Press (1981) 245
,[8] A presentation for the mapping class group of a closed orientable surface, Topology 19 (1980) 221
, ,[9] Shadows of mapping class groups: capturing convex cocompactness, to appear in Geom. Funct. Anal.
, ,[10] The boundary at infinity of the curve complex and the relative mapping class group, Preprint
,[11] Cannon–Thurston maps and the curve complex, Preprint
, , ,[12] Connectivity of the space of ending laminations, Preprint
, ,[13] Geometry of the complex of curves. I. Hyperbolicity, Invent. Math. 138 (1999) 103
, ,[14] Train track expansions of measured foliations, Preprint
,[15] Combinatorics of train tracks, Annals of Math. Studies 125, Princeton Univ. Press (1992)
, ,[16] Curve complexes with connected boundary are rigid, Preprint
, ,[17] The end of the curve complex, Preprint
,[18] The geometry and topology of three-manifolds, Princeton Univ. Math. Dept. Lecture Notes (1980)
,[19] Minimal stretch maps between hyperbolic surfaces, Unpublished preprint (1986)
,[20] On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. $($N.S.$)$ 19 (1988) 417
,[21] Topology of manifolds, Amer. Math. Soc. Colloq. Publ. 32, Amer. Math. Soc. (1979)
,[22] The metric space of geodesic laminations on a surface. I, Geom. Topol. 8 (2004) 539
, ,Cité par Sources :