Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be an ring spectrum. We use the description from our preprint [math.AT/0612165] of the cyclic bar and cobar construction to give a direct definition of topological Hochschild homology and cohomology of using the Stasheff associahedra and another family of polyhedra called cyclohedra. This construction builds the maps making up the structure into , and allows us to study how varies over the moduli space of structures on .
As an example, we study how topological Hochschild cohomology of Morava –theory varies over the moduli space of structures and show that in the generic case, when a certain matrix describing the noncommutativity of the multiplication is invertible, topological Hochschild cohomology of –periodic Morava –theory is the corresponding Morava –theory. If the structure is “more commutative”, topological Hochschild cohomology of Morava –theory is some extension of Morava –theory.
Angeltveit, Vigleik 1
@article{GT_2008_12_2_a7, author = {Angeltveit, Vigleik}, title = {Topological {Hochschild} homology and cohomology of {A\ensuremath{\infty}} ring spectra}, journal = {Geometry & topology}, pages = {987--1032}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2008}, doi = {10.2140/gt.2008.12.987}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.987/} }
TY - JOUR AU - Angeltveit, Vigleik TI - Topological Hochschild homology and cohomology of A∞ ring spectra JO - Geometry & topology PY - 2008 SP - 987 EP - 1032 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.987/ DO - 10.2140/gt.2008.12.987 ID - GT_2008_12_2_a7 ER -
Angeltveit, Vigleik. Topological Hochschild homology and cohomology of A∞ ring spectra. Geometry & topology, Tome 12 (2008) no. 2, pp. 987-1032. doi : 10.2140/gt.2008.12.987. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.987/
[1] The cyclic bar construction on ${A}_\infty$ H–spaces
,[2] Enriched Reedy categories, to appear in Proc. Amer. Math. Soc.
,[3] Hopf algebra structure on topological Hochschild homology, Algebr. Geom. Topol. 5 (2005) 1223
, ,[4] Algebraic K–theory of the fraction field of topological K–theory, in preparation
, ,[5] On the realization of certain modules over the Steenrod algebra, Math. Scand. 31 (1972) 220
, ,[6] Brave new Bockstein operations, preprint available at http://www.maths.gla.ac.uk/ ajb/dvi-ps.html
, ,[7] On the Adams spectral sequence for $R$–modules, Algebr. Geom. Topol. 1 (2001) 173
, ,[8] Topological Hochschild cohomology and generalized Morita equivalence, Algebr. Geom. Topol. 4 (2004) 623
, ,[9] Multiplicative structures on topological Hochschild homology, to appear
, ,[10] Conditionally convergent spectral sequences, from: "Homotopy invariant algebraic structures (Baltimore, MD, 1998)", Contemp. Math. 239, Amer. Math. Soc. (1999) 49
,[11] Homotopy invariant algebraic structures on topological spaces, Lecture Notes in Math. 347, Springer (1973)
, ,[12] Topological Hochschild homology, unpublished
,[13] The topological Hochschild homology of $\mathbb{Z}$ and $\mathbb{Z}/p$, unpublished
,[14] $H_\infty $ ring spectra and their applications, Lecture Notes in Math. 1176, Springer (1986)
, , , ,[15] Postnikov extensions of ring spectra, Algebr. Geom. Topol. 6 (2006) 1785
, ,[16] Complete modules and torsion modules, Amer. J. Math. 124 (2002) 199
, ,[17] Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs 47, Amer. Math. Soc. (1997)
, , , ,[18] Topological Hochschild homology of $E_n$–ring spectra
, ,[19] Associative $MU$–algebras, preprint available at http://www.math.northwestern.edu/ pgoerss/
,[20] Moduli spaces of commutative ring spectra, from: "Structured ring spectra", London Math. Soc. Lecture Note Ser. 315, Cambridge Univ. Press (2004) 151
, ,[21] Lubin–Tate deformations in algebraic topology, preprint
, ,[22] Symmetric Massey products and a Hirsch formula in homology, Trans. Amer. Math. Soc. 163 (1972) 245
,[23] Hoschschild cohomology and moduli spaces of strongly homotopy associative algebras, Homology Homotopy Appl. 5 (2003) 73
,[24] Towers of $M$U–algebras and the generalized Hopkins–Miller theorem, Proc. London Math. Soc. $(3)$ 87 (2003) 498
,[25] Higher operads, higher categories, London Math. Soc. Lecture Note Series 298, Cambridge University Press (2004)
,[26] A solution of Deligne's Hochschild cohomology conjecture, from: "Recent progress in homotopy theory (Baltimore, MD, 2000)", Contemp. Math. 293, Amer. Math. Soc. (2002) 153
, ,[27] On the structure of $P(n)_{*}P((n))$ for $p=2$, Trans. Amer. Math. Soc. 354 (2002) 1749
,[28] Complex cobordism and stable homotopy groups of spheres. 2nd ed., AMS Chelsea Pub. (2004)
,[29] Notes on the Hopkins–Miller theorem, from: "Homotopy theory via algebraic geometry and group representations (Evanston, IL, 1997)", Contemp. Math. 220, Amer. Math. Soc. (1998) 313
,[30] The units of a ring spectrum and a logarithmic cohomology operation, J. Amer. Math. Soc. 19 (2006) 969
,[31] Obstruction theory and the strict associativity of Morava $K$–theories, from: "Advances in homotopy theory (Cortona, 1988)", London Math. Soc. Lecture Note Ser. 139, Cambridge Univ. Press (1989) 143
,[32] Operads and $\Gamma$–homology of commutative rings, Math. Proc. Cambridge Philos. Soc. 132 (2002) 197
, ,[33] Galois extensions of structured ring spectra, Mem. Amer. Math. Soc. 192 (2008) 1
,[34] Products on $\mathrm{MU}$–modules, Trans. Amer. Math. Soc. 351 (1999) 2569
,[35] A relation between Hochschild homology and cohomology for Gorenstein rings, Proc. Amer. Math. Soc. 126 (1998) 1345
,[36] Erratum to: “A relation between Hochschild homology and cohomology for Gorenstein rings” [Proc. Amer. Math. Soc. 126 (1998) 1345–1348], Proc. Amer. Math. Soc. 130 (2002)
,[37] Étale descent for Hochschild and cyclic homology, Comment. Math. Helv. 66 (1991) 368
, ,Cité par Sources :