Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
If is a compact set, a topological contraction is a self-embedding such that the intersection of the successive images , , consists of one point. In dimension 3, we prove that there are smooth topological contractions of the handlebodies of genus whose image is essential.
Grines, Viatcheslav 1 ; Laudenbach, François 2
@article{GT_2008_12_2_a6, author = {Grines, Viatcheslav and Laudenbach, Fran\c{c}ois}, title = {Essential curves in handlebodies and topological contractions}, journal = {Geometry & topology}, pages = {981--985}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2008}, doi = {10.2140/gt.2008.12.981}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.981/} }
TY - JOUR AU - Grines, Viatcheslav AU - Laudenbach, François TI - Essential curves in handlebodies and topological contractions JO - Geometry & topology PY - 2008 SP - 981 EP - 985 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.981/ DO - 10.2140/gt.2008.12.981 ID - GT_2008_12_2_a6 ER -
%0 Journal Article %A Grines, Viatcheslav %A Laudenbach, François %T Essential curves in handlebodies and topological contractions %J Geometry & topology %D 2008 %P 981-985 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.981/ %R 10.2140/gt.2008.12.981 %F GT_2008_12_2_a6
Grines, Viatcheslav; Laudenbach, François. Essential curves in handlebodies and topological contractions. Geometry & topology, Tome 12 (2008) no. 2, pp. 981-985. doi : 10.2140/gt.2008.12.981. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.981/
[1] Isotopy of links. Algebraic geometry and topology, from: "A symposium in honor of S. Lefschetz", Princeton University Press (1957) 280
,[2] Knots and links, Math. Lecture Series 7, Publish or Perish (1976)
,[3] Heegaard-Zerlegungen der $3$–Sphäre, Topology 7 (1968) 195
,Cité par Sources :