Essential curves in handlebodies and topological contractions
Geometry & topology, Tome 12 (2008) no. 2, pp. 981-985.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

If X is a compact set, a topological contraction is a self-embedding f such that the intersection of the successive images fk(X), k > 0, consists of one point. In dimension 3, we prove that there are smooth topological contractions of the handlebodies of genus 2 whose image is essential.

DOI : 10.2140/gt.2008.12.981
Keywords: Heegaard splitting, compression disk, North-South diffeomorphism

Grines, Viatcheslav 1 ; Laudenbach, François 2

1 N. Novgorod State University, Gagarina 23, N. Novgorod, 603950 Russia
2 Laboratoire de mathématiques Jean Leray, UMR 6629 du CNRS, Faculté des Sciences et Techniques, Université de Nantes, 2, rue de la Houssinière, F-44322 Nantes cedex 3, France
@article{GT_2008_12_2_a6,
     author = {Grines, Viatcheslav and Laudenbach, Fran\c{c}ois},
     title = {Essential curves in handlebodies and topological contractions},
     journal = {Geometry & topology},
     pages = {981--985},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2008},
     doi = {10.2140/gt.2008.12.981},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.981/}
}
TY  - JOUR
AU  - Grines, Viatcheslav
AU  - Laudenbach, François
TI  - Essential curves in handlebodies and topological contractions
JO  - Geometry & topology
PY  - 2008
SP  - 981
EP  - 985
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.981/
DO  - 10.2140/gt.2008.12.981
ID  - GT_2008_12_2_a6
ER  - 
%0 Journal Article
%A Grines, Viatcheslav
%A Laudenbach, François
%T Essential curves in handlebodies and topological contractions
%J Geometry & topology
%D 2008
%P 981-985
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.981/
%R 10.2140/gt.2008.12.981
%F GT_2008_12_2_a6
Grines, Viatcheslav; Laudenbach, François. Essential curves in handlebodies and topological contractions. Geometry & topology, Tome 12 (2008) no. 2, pp. 981-985. doi : 10.2140/gt.2008.12.981. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.981/

[1] J Milnor, Isotopy of links. Algebraic geometry and topology, from: "A symposium in honor of S. Lefschetz", Princeton University Press (1957) 280

[2] D Rolfsen, Knots and links, Math. Lecture Series 7, Publish or Perish (1976)

[3] F Waldhausen, Heegaard-Zerlegungen der $3$–Sphäre, Topology 7 (1968) 195

Cité par Sources :