Addendum to: Commensurations of the Johnson kernel
Geometry & topology, Tome 12 (2008) no. 1, pp. 97-101.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let K(S) be the subgroup of the extended mapping class group, Mod(S), generated by Dehn twists about separating curves. In our earlier paper, we showed that Comm(K(S))Aut(K(S))Mod(S) when S is a closed, connected, orientable surface of genus g 4. By modifying our original proof, we show that the same result holds for g 3, thus confirming Farb’s conjecture in all cases (the statement is not true for g 2).

DOI : 10.2140/gt.2008.12.97
Keywords: Johnson kernel, Torelli group, automorphisms, abstract commensurator

Brendle, Tara E 1 ; Margalit, Dan 2

1 Department of Mathematics, Louisiana State University, Baton Rouge LA 70803-4918, USA
2 Department of Mathematics, University of Utah, 155 S 1400 East, Salt Lake City UT 84112, USA
@article{GT_2008_12_1_a1,
     author = {Brendle, Tara E and Margalit, Dan},
     title = {Addendum to: {Commensurations} of the {Johnson} kernel},
     journal = {Geometry & topology},
     pages = {97--101},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2008},
     doi = {10.2140/gt.2008.12.97},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.97/}
}
TY  - JOUR
AU  - Brendle, Tara E
AU  - Margalit, Dan
TI  - Addendum to: Commensurations of the Johnson kernel
JO  - Geometry & topology
PY  - 2008
SP  - 97
EP  - 101
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.97/
DO  - 10.2140/gt.2008.12.97
ID  - GT_2008_12_1_a1
ER  - 
%0 Journal Article
%A Brendle, Tara E
%A Margalit, Dan
%T Addendum to: Commensurations of the Johnson kernel
%J Geometry & topology
%D 2008
%P 97-101
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.97/
%R 10.2140/gt.2008.12.97
%F GT_2008_12_1_a1
Brendle, Tara E; Margalit, Dan. Addendum to: Commensurations of the Johnson kernel. Geometry & topology, Tome 12 (2008) no. 1, pp. 97-101. doi : 10.2140/gt.2008.12.97. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.97/

[1] T E Brendle, D Margalit, Commensurations of the Johnson kernel, Geom. Topol. 8 (2004) 1361

[2] B Farb, Automorphisms of the Torelli group, AMS sectional meeting, Ann Arbor, Michigan, March 1 (2002)

[3] B Farb, N V Ivanov, The Torelli geometry and its applications: research announcement, Math. Res. Lett. 12 (2005) 293

[4] E Irmak, Superinjective simplicial maps of complexes of curves and injective homomorphisms of subgroups of mapping class groups, Topology 43 (2004) 513

[5] J D Mccarthy, W R Vautaw, Automorphisms of Torelli groups

[6] G Mess, The Torelli groups for genus $2$ and $3$ surfaces, Topology 31 (1992) 775

Cité par Sources :