Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be the subgroup of the extended mapping class group, , generated by Dehn twists about separating curves. In our earlier paper, we showed that when is a closed, connected, orientable surface of genus . By modifying our original proof, we show that the same result holds for , thus confirming Farb’s conjecture in all cases (the statement is not true for ).
Brendle, Tara E 1 ; Margalit, Dan 2
@article{GT_2008_12_1_a1, author = {Brendle, Tara E and Margalit, Dan}, title = {Addendum to: {Commensurations} of the {Johnson} kernel}, journal = {Geometry & topology}, pages = {97--101}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2008}, doi = {10.2140/gt.2008.12.97}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.97/} }
TY - JOUR AU - Brendle, Tara E AU - Margalit, Dan TI - Addendum to: Commensurations of the Johnson kernel JO - Geometry & topology PY - 2008 SP - 97 EP - 101 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.97/ DO - 10.2140/gt.2008.12.97 ID - GT_2008_12_1_a1 ER -
Brendle, Tara E; Margalit, Dan. Addendum to: Commensurations of the Johnson kernel. Geometry & topology, Tome 12 (2008) no. 1, pp. 97-101. doi : 10.2140/gt.2008.12.97. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.97/
[1] Commensurations of the Johnson kernel, Geom. Topol. 8 (2004) 1361
, ,[2] Automorphisms of the Torelli group, AMS sectional meeting, Ann Arbor, Michigan, March 1 (2002)
,[3] The Torelli geometry and its applications: research announcement, Math. Res. Lett. 12 (2005) 293
, ,[4] Superinjective simplicial maps of complexes of curves and injective homomorphisms of subgroups of mapping class groups, Topology 43 (2004) 513
,[5] Automorphisms of Torelli groups
, ,[6] The Torelli groups for genus $2$ and $3$ surfaces, Topology 31 (1992) 775
,Cité par Sources :