Legendrian knots, transverse knots and combinatorial Floer homology
Geometry & topology, Tome 12 (2008) no. 2, pp. 941-980.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Using the combinatorial approach to knot Floer homology, we define an invariant for Legendrian knots (or links) in the three-sphere, with values in knot Floer homology. This invariant can also be used to construct an invariant of transverse knots.

DOI : 10.2140/gt.2008.12.941
Keywords: Legendrian knots, Floer homology

Ozsváth, Peter 1 ; Szabó, Zoltán 2 ; Thurston, Dylan P 3

1 Department of Mathematics, Columbia University, New York, NY 10027
2 Department of Mathematics, Princeton University, Princeton, New Jersey 08544
3 Department of Mathematics, Barnard College, Columbia University, New York, NY 10027
@article{GT_2008_12_2_a5,
     author = {Ozsv\'ath, Peter and Szab\'o, Zolt\'an and Thurston, Dylan P},
     title = {Legendrian knots, transverse knots and combinatorial {Floer} homology},
     journal = {Geometry & topology},
     pages = {941--980},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2008},
     doi = {10.2140/gt.2008.12.941},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.941/}
}
TY  - JOUR
AU  - Ozsváth, Peter
AU  - Szabó, Zoltán
AU  - Thurston, Dylan P
TI  - Legendrian knots, transverse knots and combinatorial Floer homology
JO  - Geometry & topology
PY  - 2008
SP  - 941
EP  - 980
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.941/
DO  - 10.2140/gt.2008.12.941
ID  - GT_2008_12_2_a5
ER  - 
%0 Journal Article
%A Ozsváth, Peter
%A Szabó, Zoltán
%A Thurston, Dylan P
%T Legendrian knots, transverse knots and combinatorial Floer homology
%J Geometry & topology
%D 2008
%P 941-980
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.941/
%R 10.2140/gt.2008.12.941
%F GT_2008_12_2_a5
Ozsváth, Peter; Szabó, Zoltán; Thurston, Dylan P. Legendrian knots, transverse knots and combinatorial Floer homology. Geometry & topology, Tome 12 (2008) no. 2, pp. 941-980. doi : 10.2140/gt.2008.12.941. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.941/

[1] Y Chekanov, Differential algebra of Legendrian links, Invent. Math. 150 (2002) 441

[2] P R Cromwell, Embedding knots and links in an open book. I. Basic properties, Topology Appl. 64 (1995) 37

[3] I A Dynnikov, Arc-presentations of links: monotonic simplification, Fund. Math. 190 (2006) 29

[4] J Epstein, D Fuchs, M Meyer, Chekanov–Eliashberg invariants and transverse approximations of Legendrian knots, Pacific J. Math. 201 (2001) 89

[5] J B Etnyre, Legendrian and transversal knots, from: "Handbook of knot theory", Elsevier B. V., Amsterdam (2005) 105

[6] J B Etnyre, K Honda, Knots and contact geometry. I. Torus knots and the figure eight knot, J. Symplectic Geom. 1 (2001) 63

[7] D Fuchs, S Tabachnikov, Invariants of Legendrian and transverse knots in the standard contact space, Topology 36 (1997) 1025

[8] P B Kronheimer, T S Mrowka, Gauge theory for embedded surfaces. I, Topology 32 (1993) 773

[9] C Manolescu, P Ozsváth, S Sarkar, A combinatorial description of knot Floer homology, to appear in Ann. of Math. (2)

[10] C Manolescu, P Ozsváth, Z Szabó, D Thurston, On combinatorial link Floer homology, Geom. Topol. 11 (2007) 2339

[11] L Ng, Computable Legendrian invariants, Topology 42 (2003) 55

[12] L Ng, A Legendrian Thurston–Bennequin bound from Khovanov homology, Algebr. Geom. Topol. 5 (2005) 1637

[13] L Ng, P Ozsváth, Z Szabó, Transverse knots distinguished by knot Floer Homology, to appear in J. Symplectic Geom.

[14] P Ozsváth, Z Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615

[15] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58

[16] P Ozsváth, Z Szabó, Heegaard Floer homology and contact structures, Duke Math. J. 129 (2005) 39

[17] P Ozsváth, Z Szabó, Holomorphic disks, link invariants, and the multi-variable Alexander polynomial, to appear in Algebr. Geom. Topol. 8 (2008)

[18] O Plamenevskaya, Bounds for the Thurston–Bennequin number from Floer homology, Algebr. Geom. Topol. 4 (2004) 399

[19] O Plamenevskaya, Transverse knots and Khovanov homology, Math. Res. Lett. 13 (2006) 571

[20] J A Rasmussen, Khovanov homology and the slice genus, to appear in Invent. Math.

[21] J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003)

[22] L Rudolph, An obstruction to sliceness via contact geometry and “classical” gauge theory, Invent. Math. 119 (1995) 155

Cité par Sources :