Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Using the combinatorial approach to knot Floer homology, we define an invariant for Legendrian knots (or links) in the three-sphere, with values in knot Floer homology. This invariant can also be used to construct an invariant of transverse knots.
Ozsváth, Peter 1 ; Szabó, Zoltán 2 ; Thurston, Dylan P 3
@article{GT_2008_12_2_a5, author = {Ozsv\'ath, Peter and Szab\'o, Zolt\'an and Thurston, Dylan P}, title = {Legendrian knots, transverse knots and combinatorial {Floer} homology}, journal = {Geometry & topology}, pages = {941--980}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2008}, doi = {10.2140/gt.2008.12.941}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.941/} }
TY - JOUR AU - Ozsváth, Peter AU - Szabó, Zoltán AU - Thurston, Dylan P TI - Legendrian knots, transverse knots and combinatorial Floer homology JO - Geometry & topology PY - 2008 SP - 941 EP - 980 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.941/ DO - 10.2140/gt.2008.12.941 ID - GT_2008_12_2_a5 ER -
%0 Journal Article %A Ozsváth, Peter %A Szabó, Zoltán %A Thurston, Dylan P %T Legendrian knots, transverse knots and combinatorial Floer homology %J Geometry & topology %D 2008 %P 941-980 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.941/ %R 10.2140/gt.2008.12.941 %F GT_2008_12_2_a5
Ozsváth, Peter; Szabó, Zoltán; Thurston, Dylan P. Legendrian knots, transverse knots and combinatorial Floer homology. Geometry & topology, Tome 12 (2008) no. 2, pp. 941-980. doi : 10.2140/gt.2008.12.941. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.941/
[1] Differential algebra of Legendrian links, Invent. Math. 150 (2002) 441
,[2] Embedding knots and links in an open book. I. Basic properties, Topology Appl. 64 (1995) 37
,[3] Arc-presentations of links: monotonic simplification, Fund. Math. 190 (2006) 29
,[4] Chekanov–Eliashberg invariants and transverse approximations of Legendrian knots, Pacific J. Math. 201 (2001) 89
, , ,[5] Legendrian and transversal knots, from: "Handbook of knot theory", Elsevier B. V., Amsterdam (2005) 105
,[6] Knots and contact geometry. I. Torus knots and the figure eight knot, J. Symplectic Geom. 1 (2001) 63
, ,[7] Invariants of Legendrian and transverse knots in the standard contact space, Topology 36 (1997) 1025
, ,[8] Gauge theory for embedded surfaces. I, Topology 32 (1993) 773
, ,[9] A combinatorial description of knot Floer homology, to appear in Ann. of Math. (2)
, , ,[10] On combinatorial link Floer homology, Geom. Topol. 11 (2007) 2339
, , , ,[11] Computable Legendrian invariants, Topology 42 (2003) 55
,[12] A Legendrian Thurston–Bennequin bound from Khovanov homology, Algebr. Geom. Topol. 5 (2005) 1637
,[13] Transverse knots distinguished by knot Floer Homology, to appear in J. Symplectic Geom.
, , ,[14] Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615
, ,[15] Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58
, ,[16] Heegaard Floer homology and contact structures, Duke Math. J. 129 (2005) 39
, ,[17] Holomorphic disks, link invariants, and the multi-variable Alexander polynomial, to appear in Algebr. Geom. Topol. 8 (2008)
, ,[18] Bounds for the Thurston–Bennequin number from Floer homology, Algebr. Geom. Topol. 4 (2004) 399
,[19] Transverse knots and Khovanov homology, Math. Res. Lett. 13 (2006) 571
,[20] Khovanov homology and the slice genus, to appear in Invent. Math.
,[21] Floer homology and knot complements, PhD thesis, Harvard University (2003)
,[22] An obstruction to sliceness via contact geometry and “classical” gauge theory, Invent. Math. 119 (1995) 155
,Cité par Sources :