A symplectic manifold homeomorphic but not diffeomorphic to CP2#3CP2
Geometry & topology, Tome 12 (2008) no. 2, pp. 919-940.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In this article we construct a minimal symplectic 4–manifold and prove it is homeomorphic but not diffeomorphic to 2#3¯2.

DOI : 10.2140/gt.2008.12.919
Keywords: symplectic topology, Luttinger surgery, fundamental group, 4-manifold

Baldridge, Scott 1 ; Kirk, Paul A 2

1 Department of Mathematics, Louisiana State University, Baton Rouge, LA 70817
2 Department of Mathematics, Indiana University, Bloomington, IN 47405
@article{GT_2008_12_2_a4,
     author = {Baldridge, Scott and Kirk, Paul A},
     title = {A symplectic manifold homeomorphic but not diffeomorphic to {CP2#3CP2}},
     journal = {Geometry & topology},
     pages = {919--940},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2008},
     doi = {10.2140/gt.2008.12.919},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.919/}
}
TY  - JOUR
AU  - Baldridge, Scott
AU  - Kirk, Paul A
TI  - A symplectic manifold homeomorphic but not diffeomorphic to CP2#3CP2
JO  - Geometry & topology
PY  - 2008
SP  - 919
EP  - 940
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.919/
DO  - 10.2140/gt.2008.12.919
ID  - GT_2008_12_2_a4
ER  - 
%0 Journal Article
%A Baldridge, Scott
%A Kirk, Paul A
%T A symplectic manifold homeomorphic but not diffeomorphic to CP2#3CP2
%J Geometry & topology
%D 2008
%P 919-940
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.919/
%R 10.2140/gt.2008.12.919
%F GT_2008_12_2_a4
Baldridge, Scott; Kirk, Paul A. A symplectic manifold homeomorphic but not diffeomorphic to CP2#3CP2. Geometry & topology, Tome 12 (2008) no. 2, pp. 919-940. doi : 10.2140/gt.2008.12.919. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.919/

[1] A Akhmedov, Exotic smooth structures on $3\mathbb{CP}^2\#7\overline{\mathbb{CP}}^2$

[2] A Akhmedov, B D Park, Exotic smooth structures on small $4$–manifolds

[3] D Auroux, S K Donaldson, L Katzarkov, Luttinger surgery along Lagrangian tori and non-isotopy for singular symplectic plane curves, Math. Ann. 326 (2003) 185

[4] S Baldridge, New symplectic 4-manifolds with $b_+=1$, Math. Ann. 333 (2005) 633

[5] S Baldridge, P Kirk, Luttinger surgery and interesting symplectic 4-manifolds with small Euler characteristic,

[6] S Baldridge, P Kirk, Symplectic 4-manifolds with arbitrary fundamental group near the Bogomolov-Miyaoka-Yau line, J. Symplectic Geom. 4 (2006) 63

[7] S Baldridge, P Kirk, On symplectic 4-manifolds with prescribed fundamental group, Comment. Math. Helv. 82 (2007) 845

[8] S K Donaldson, Irrationality and the $h$–cobordism conjecture, J. Differential Geom. 26 (1987) 141

[9] R Fintushel, R J Stern, Families of simply connected $4$–manifolds with the same Seiberg–Witten invariants, Topology 43 (2004) 1449

[10] R Fintushel, R J Stern, Double node neighborhoods and families of simply connected $4$–manifolds with $b^+=1$, J. Amer. Math. Soc. 19 (2006) 171

[11] M H Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982) 357

[12] R E Gompf, A new construction of symplectic manifolds, Ann. of Math. $(2)$ 142 (1995) 527

[13] D Kotschick, On manifolds homeomorphic to $\mathbb{CP}^2\# 8\overline{\mathbb{CP}}^2$, Invent. Math. 95 (1989) 591

[14] K M Luttinger, Lagrangian tori in $\mathbb{R}^4$, J. Differential Geom. 42 (1995) 220

[15] D Mcduff, D Salamon, Introduction to symplectic topology, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1998)

[16] P Ozsváth, Z Szabó, On Park's exotic smooth four-manifolds, from: "Geometry and topology of manifolds", Fields Inst. Commun. 47, Amer. Math. Soc. (2005) 253

[17] J Park, Simply connected symplectic $4$–manifolds with $b^+_2=1$ and $c^2_1=2$, Invent. Math. 159 (2005) 657

[18] J Park, A I Stipsicz, Z Szabó, Exotic smooth structures on $\mathbb{CP}^2\#5\overline{\mathbb{CP}^2}$, Math. Res. Lett. 12 (2005) 701

[19] A I Stipsicz, Z Szabó, An exotic smooth structure on $\mathbb C\mathbb P^2\#6\overline\mathbb{C\mathbb P^2}$, Geom. Topol. 9 (2005) 813

[20] C H Taubes, Counting pseudo-holomorphic submanifolds in dimension $4$, J. Differential Geom. 44 (1996) 818

[21] C H Taubes, Seiberg–Witten and Gromov invariants, from: "Geometry and physics (Aarhus, 1995)", Lecture Notes in Pure and Appl. Math. 184, Dekker (1997) 591

[22] M Usher, Minimality and symplectic sums, Int. Math. Res. Not. (2006) 17

Cité par Sources :