Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Witten’s top Chern class is a particular cohomology class on the moduli space of Riemann surfaces endowed with –spin structures. It plays a key role in Witten’s conjecture relating to the intersection theory on these moduli spaces.
Our first goal is to compute the integral of Witten’s class over the so-called double ramification cycles in genus 1. We obtain a simple closed formula for these integrals.
This allows us, using the methods of the first author [Int. Math. Res. Not. 38 (2003) 2051-2094], to find an algorithm for computing the intersection numbers of the Witten class with powers of the –classes over any moduli space of –spin structures, in short, all numbers involved in Witten’s conjecture.
Shadrin, Sergey 1 ; Zvonkine, Dimitri 2
@article{GT_2008_12_2_a2, author = {Shadrin, Sergey and Zvonkine, Dimitri}, title = {Intersection numbers with {Witten{\textquoteright}s} top {Chern} class}, journal = {Geometry & topology}, pages = {713--745}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2008}, doi = {10.2140/gt.2008.12.713}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.713/} }
TY - JOUR AU - Shadrin, Sergey AU - Zvonkine, Dimitri TI - Intersection numbers with Witten’s top Chern class JO - Geometry & topology PY - 2008 SP - 713 EP - 745 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.713/ DO - 10.2140/gt.2008.12.713 ID - GT_2008_12_2_a2 ER -
Shadrin, Sergey; Zvonkine, Dimitri. Intersection numbers with Witten’s top Chern class. Geometry & topology, Tome 12 (2008) no. 2, pp. 713-745. doi : 10.2140/gt.2008.12.713. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.713/
[1] Moduli of twisted spin curves, Proc. Amer. Math. Soc. 131 (2003) 685
, ,[2] Localization, Hurwitz numbers and the Witten conjecture
, , ,[3] Stable twisted curves and their $r$–spin structures, to appear in Annales de l'Institut Fourier
,[4] The Witten top Chern class via $K$–theory, J. Algebraic Geom. 15 (2006) 681
,[5] Relative maps and tautological classes, J. Eur. Math. Soc. $($JEMS$)$ 7 (2005) 13
, ,[6] Tautological relations and the $r$–spin Witten conjecture
, , ,[7] Topological recursive relations in $H^{2g}(\mathscr M_{g,n})$, Invent. Math. 148 (2002) 627
,[8] Geometry of the moduli of higher spin curves, Internat. J. Math. 11 (2000) 637
,[9] KP hierarchy and Hodge integrals, preprint (2007)
,[10] An algebro-geometric proof of Witten's conjecture, J. Amer. Math. Soc. 20 (2007) 1079
, ,[11] A simple proof of Witten conjecture through localization
, ,[12] Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys. 147 (1992) 1
,[13] Weil-Petersson volumes and intersection theory on the moduli space of curves, J. Amer. Math. Soc. 20 (2007) 1
,[14] Towards an enumerative geometry of the moduli space of curves, from: "Arithmetic and geometry, Vol. II", Progr. Math. 36, Birkhäuser (1983) 271
,[15] Gromov-Witten theory, Hurwitz numbers, and Matrix models, I
, ,[16] Witten's top Chern class on the moduli space of higher spin curves, from: "Frobenius manifolds", Aspects Math. E36, Vieweg (2004) 253
,[17] Algebraic construction of Witten's top Chern class, from: "Advances in algebraic geometry motivated by physics (Lowell, MA, 2000)", Contemp. Math. 276, Amer. Math. Soc. (2001) 229
, ,[18] Geometry of meromorphic functions and intersections on moduli spaces of curves, Int. Math. Res. Not. (2003) 2051
,[19] Two-dimensional gravity and intersection theory on moduli space, from: "Surveys in differential geometry (Cambridge, MA, 1990)", Lehigh Univ. (1991) 243
,[20] Algebraic geometry associated with matrix models of two-dimensional gravity, from: "Topological methods in modern mathematics (Stony Brook, NY, 1991)", Publish or Perish (1993) 235
,Cité par Sources :