Hyperbolic 2–dimensional manifolds with 3–dimensional automorphism group
Geometry & topology, Tome 12 (2008) no. 2, pp. 643-711.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In this paper we determine all Kobayashi-hyperbolic 2–dimensional complex manifolds for which the group of holomorphic automorphisms has dimension 3. This work concludes a recent series of papers by the author on the classification of hyperbolic n–dimensional manifolds, with automorphism group of dimension at least n2 1, where n 2.

DOI : 10.2140/gt.2008.12.643
Keywords: Kobayashi-hyperbolic manifolds, holomorphic automorphism groups

Isaev, Alexander V 1

1 Department of Mathematics, The Australian National University, Canberra, ACT 0200, Australia
@article{GT_2008_12_2_a1,
     author = {Isaev, Alexander V},
     title = {Hyperbolic 2{\textendash}dimensional manifolds with 3{\textendash}dimensional automorphism group},
     journal = {Geometry & topology},
     pages = {643--711},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2008},
     doi = {10.2140/gt.2008.12.643},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.643/}
}
TY  - JOUR
AU  - Isaev, Alexander V
TI  - Hyperbolic 2–dimensional manifolds with 3–dimensional automorphism group
JO  - Geometry & topology
PY  - 2008
SP  - 643
EP  - 711
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.643/
DO  - 10.2140/gt.2008.12.643
ID  - GT_2008_12_2_a1
ER  - 
%0 Journal Article
%A Isaev, Alexander V
%T Hyperbolic 2–dimensional manifolds with 3–dimensional automorphism group
%J Geometry & topology
%D 2008
%P 643-711
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.643/
%R 10.2140/gt.2008.12.643
%F GT_2008_12_2_a1
Isaev, Alexander V. Hyperbolic 2–dimensional manifolds with 3–dimensional automorphism group. Geometry & topology, Tome 12 (2008) no. 2, pp. 643-711. doi : 10.2140/gt.2008.12.643. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.643/

[1] D N Akhiezer, S G Gindikin, On Stein extensions of real symmetric spaces, Math. Ann. 286 (1990) 1

[2] A V Alekseevsky, D V Alekseevsky, Riemannian $G$–manifold with one-dimensional orbit space, Ann. Global Anal. Geom. 11 (1993) 197

[3] E Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2) 1 (1932) 333

[4] E Cartan, Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes I, Ann. Mat. Pura Appl. 11 (1933) 17

[5] D Van Dantzig, B L Van Der Waerden, Über metrisch homogene Räume, Abh. Math. Sem. Hamburg 6 (1928) 367

[6] G Fels, A Huckleberry, Characterization of cycle domains via Kobayashi hyperbolicity, Bull. Soc. Math. France 133 (2005) 121

[7] J A Gifford, A V Isaev, S G Krantz, On the dimensions of the automorphism groups of hyperbolic Reinhardt domains, Illinois J. Math. 44 (2000) 602

[8] A V Isaev, Hyperbolic manifolds of dimension $n$ with automorphism group of dimension $n^2-1$, J. Geom. Anal. 15 (2005) 239

[9] A V Isaev, Analogues of Rossi's map and E Cartan's classification of homogeneous strongly pseudoconvex 3–dimensional hypersurfaces, J. Lie Theory 16 (2006) 407

[10] A V Isaev, Hyperbolic $n$–dimensional manifolds with automorphism group of dimension $n^2$, Geom. Funct. Anal. 17 (2007) 192

[11] A V Isaev, S G Krantz, On the automorphism groups of hyperbolic manifolds, J. Reine Angew. Math. 534 (2001) 187

[12] A V Isaev, N G Kruzhilin, Effective actions of the unitary group on complex manifolds, Canad. J. Math. 54 (2002) 1254

[13] A V Isaev, N G Kruzhilin, Effective actions of $\mathrm{SU}_n$ on complex $n$–dimensional manifolds, Illinois J. Math. 48 (2004) 37

[14] W Kaup, Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen, Invent. Math. 3 (1967) 43

[15] K T Kim, L Verdiani, Complex $n$–dimensional manifolds with a real $n^2$–dimensional automorphism group, J. Geom. Anal. 14 (2004) 701

[16] S Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics 2, Marcel Dekker (1970)

[17] S Kobayashi, Transformation groups in differential geometry, Springer (1972)

[18] S B Myers, N E Steenrod, The group of isometries of a Riemannian manifold, Ann. of Math. $(2)$ 40 (1939) 400

[19] H Rossi, Attaching analytic spaces to an analytic space along a pseudoconcave boundary, from: "Proc. Conf. Complex Analysis (Minneapolis, 1964)", Springer (1965) 242

[20] R Schoen, On the conformal and CR automorphism groups, Geom. Funct. Anal. 5 (1995) 464

Cité par Sources :