Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
In this paper we determine all Kobayashi-hyperbolic 2–dimensional complex manifolds for which the group of holomorphic automorphisms has dimension 3. This work concludes a recent series of papers by the author on the classification of hyperbolic –dimensional manifolds, with automorphism group of dimension at least , where .
Isaev, Alexander V 1
@article{GT_2008_12_2_a1, author = {Isaev, Alexander V}, title = {Hyperbolic 2{\textendash}dimensional manifolds with 3{\textendash}dimensional automorphism group}, journal = {Geometry & topology}, pages = {643--711}, publisher = {mathdoc}, volume = {12}, number = {2}, year = {2008}, doi = {10.2140/gt.2008.12.643}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.643/} }
TY - JOUR AU - Isaev, Alexander V TI - Hyperbolic 2–dimensional manifolds with 3–dimensional automorphism group JO - Geometry & topology PY - 2008 SP - 643 EP - 711 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.643/ DO - 10.2140/gt.2008.12.643 ID - GT_2008_12_2_a1 ER -
Isaev, Alexander V. Hyperbolic 2–dimensional manifolds with 3–dimensional automorphism group. Geometry & topology, Tome 12 (2008) no. 2, pp. 643-711. doi : 10.2140/gt.2008.12.643. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.643/
[1] On Stein extensions of real symmetric spaces, Math. Ann. 286 (1990) 1
, ,[2] Riemannian $G$–manifold with one-dimensional orbit space, Ann. Global Anal. Geom. 11 (1993) 197
, ,[3] Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes II, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (2) 1 (1932) 333
,[4] Sur la géométrie pseudo-conforme des hypersurfaces de l'espace de deux variables complexes I, Ann. Mat. Pura Appl. 11 (1933) 17
,[5] Über metrisch homogene Räume, Abh. Math. Sem. Hamburg 6 (1928) 367
, ,[6] Characterization of cycle domains via Kobayashi hyperbolicity, Bull. Soc. Math. France 133 (2005) 121
, ,[7] On the dimensions of the automorphism groups of hyperbolic Reinhardt domains, Illinois J. Math. 44 (2000) 602
, , ,[8] Hyperbolic manifolds of dimension $n$ with automorphism group of dimension $n^2-1$, J. Geom. Anal. 15 (2005) 239
,[9] Analogues of Rossi's map and E Cartan's classification of homogeneous strongly pseudoconvex 3–dimensional hypersurfaces, J. Lie Theory 16 (2006) 407
,[10] Hyperbolic $n$–dimensional manifolds with automorphism group of dimension $n^2$, Geom. Funct. Anal. 17 (2007) 192
,[11] On the automorphism groups of hyperbolic manifolds, J. Reine Angew. Math. 534 (2001) 187
, ,[12] Effective actions of the unitary group on complex manifolds, Canad. J. Math. 54 (2002) 1254
, ,[13] Effective actions of $\mathrm{SU}_n$ on complex $n$–dimensional manifolds, Illinois J. Math. 48 (2004) 37
, ,[14] Reelle Transformationsgruppen und invariante Metriken auf komplexen Räumen, Invent. Math. 3 (1967) 43
,[15] Complex $n$–dimensional manifolds with a real $n^2$–dimensional automorphism group, J. Geom. Anal. 14 (2004) 701
, ,[16] Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics 2, Marcel Dekker (1970)
,[17] Transformation groups in differential geometry, Springer (1972)
,[18] The group of isometries of a Riemannian manifold, Ann. of Math. $(2)$ 40 (1939) 400
, ,[19] Attaching analytic spaces to an analytic space along a pseudoconcave boundary, from: "Proc. Conf. Complex Analysis (Minneapolis, 1964)", Springer (1965) 242
,[20] On the conformal and CR automorphism groups, Geom. Funct. Anal. 5 (1995) 464
,Cité par Sources :