Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We show that the universal covering of any compact, negatively curved manifold has an exponential growth rate which is strictly greater than the exponential growth rate of any other normal covering . Moreover, we give an explicit formula estimating the difference between and in terms of the systole of and of other elementary geometric parameters of the base space . Then we discuss some applications of this formula to periodic geodesics, to the bottom of the spectrum and to the critical exponent of normal coverings.
Sambusetti, Andrea 1
@article{GT_2008_12_1_a13, author = {Sambusetti, Andrea}, title = {Asymptotic properties of coverings in negative curvature}, journal = {Geometry & topology}, pages = {617--637}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2008}, doi = {10.2140/gt.2008.12.617}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.617/} }
Sambusetti, Andrea. Asymptotic properties of coverings in negative curvature. Geometry & topology, Tome 12 (2008) no. 1, pp. 617-637. doi : 10.2140/gt.2008.12.617. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.617/
[1] Growth tightness for word hyperbolic groups, Math. Z. 241 (2002) 597
, ,[2] A relation between growth and the spectrum of the Laplacian, Math. Z. 178 (1981) 501
,[3] Homological invariants for asymptotic invariants and systolic inequalities, to appear in G.A.F.A.
,[4] Hausdorff dimensions of limit sets. I, Invent. Math. 102 (1990) 521
,[5] Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Mathematics 83, Birkhäuser (1990)
, , editors,[6] On problems related to growth, entropy, and spectrum in group theory, J. Dynam. Control Systems 3 (1997) 51
, ,[7] Entropy of systolically extremal surfaces and asymptotic bounds, Ergodic Theory Dynam. Systems 25 (2005) 1209
, ,[8] Espaces de longueur d'entropie majorée: rigiditée topologique, adhérence des variétés, noyau de la chaleur, PhD thesis, l’Institut Fourier (2005)
,[9] Un théorème de Fatou pour les densités conformes avec applications aux revêtements galoisiens en courbure négative, Israel J. Math. 147 (2005) 333
,[10] Growth tightness of surface groups, Expo. Math. 20 (2002) 345
,[11] Related aspects of positivity in Riemannian geometry, J. Differential Geom. 25 (1987) 327
,Cité par Sources :