Asymptotic properties of coverings in negative curvature
Geometry & topology, Tome 12 (2008) no. 1, pp. 617-637.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We show that the universal covering X̃ of any compact, negatively curved manifold X0 has an exponential growth rate which is strictly greater than the exponential growth rate of any other normal covering X X0. Moreover, we give an explicit formula estimating the difference between ω(X̃) and ω(X) in terms of the systole of X and of other elementary geometric parameters of the base space X0. Then we discuss some applications of this formula to periodic geodesics, to the bottom of the spectrum and to the critical exponent of normal coverings.

DOI : 10.2140/gt.2008.12.617
Keywords: growth, entropy, systole, negative curvature, covering, geodesic, spectrum

Sambusetti, Andrea 1

1 Dipartimento di Matematica G Castelnuovo, Università “La Sapienza”, P.le Aldo Moro 5, 00185 Roma, Italy
@article{GT_2008_12_1_a13,
     author = {Sambusetti, Andrea},
     title = {Asymptotic properties of coverings in negative curvature},
     journal = {Geometry & topology},
     pages = {617--637},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2008},
     doi = {10.2140/gt.2008.12.617},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.617/}
}
TY  - JOUR
AU  - Sambusetti, Andrea
TI  - Asymptotic properties of coverings in negative curvature
JO  - Geometry & topology
PY  - 2008
SP  - 617
EP  - 637
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.617/
DO  - 10.2140/gt.2008.12.617
ID  - GT_2008_12_1_a13
ER  - 
%0 Journal Article
%A Sambusetti, Andrea
%T Asymptotic properties of coverings in negative curvature
%J Geometry & topology
%D 2008
%P 617-637
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.617/
%R 10.2140/gt.2008.12.617
%F GT_2008_12_1_a13
Sambusetti, Andrea. Asymptotic properties of coverings in negative curvature. Geometry & topology, Tome 12 (2008) no. 1, pp. 617-637. doi : 10.2140/gt.2008.12.617. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.617/

[1] G N Arzhantseva, I G Lysenok, Growth tightness for word hyperbolic groups, Math. Z. 241 (2002) 597

[2] R Brooks, A relation between growth and the spectrum of the Laplacian, Math. Z. 178 (1981) 501

[3] M Brunnbauer, Homological invariants for asymptotic invariants and systolic inequalities, to appear in G.A.F.A.

[4] K Corlette, Hausdorff dimensions of limit sets. I, Invent. Math. 102 (1990) 521

[5] É Ghys, P D L Harpe, editors, Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Mathematics 83, Birkhäuser (1990)

[6] R Grigorchuk, P De La Harpe, On problems related to growth, entropy, and spectrum in group theory, J. Dynam. Control Systems 3 (1997) 51

[7] M G Katz, S Sabourau, Entropy of systolically extremal surfaces and asymptotic bounds, Ergodic Theory Dynam. Systems 25 (2005) 1209

[8] G Reviron, Espaces de longueur d'entropie majorée: rigiditée topologique, adhérence des variétés, noyau de la chaleur, PhD thesis, l’Institut Fourier (2005)

[9] T Roblin, Un théorème de Fatou pour les densités conformes avec applications aux revêtements galoisiens en courbure négative, Israel J. Math. 147 (2005) 333

[10] A Sambusetti, Growth tightness of surface groups, Expo. Math. 20 (2002) 345

[11] D Sullivan, Related aspects of positivity in Riemannian geometry, J. Differential Geom. 25 (1987) 327

Cité par Sources :