Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We develop a method for preserving pseudoholomorphic curves in contact 3–manifolds under surgery along transverse links. This makes use of a geometrically natural boundary value problem for holomorphic curves in a 3–manifold with stable Hamiltonian structure, where the boundary conditions are defined by 1–parameter families of totally real surfaces. The technique is applied here to construct a finite energy foliation for every closed overtwisted contact 3–manifold.
Wendl, Chris 1
@article{GT_2008_12_1_a12, author = {Wendl, Chris}, title = {Finite energy foliations on overtwisted contact manifolds}, journal = {Geometry & topology}, pages = {531--616}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2008}, doi = {10.2140/gt.2008.12.531}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.531/} }
Wendl, Chris. Finite energy foliations on overtwisted contact manifolds. Geometry & topology, Tome 12 (2008) no. 1, pp. 531-616. doi : 10.2140/gt.2008.12.531. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.531/
[1] Holomorphic open book decompositions
,[2] Entrelacements et équations de Pfaff, from: "Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982)", Astérisque 107, Soc. Math. France (1983) 87
,[3] Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799
, , , , ,[4] Classification of overtwisted contact structures on $3$–manifolds, Invent. Math. 98 (1989) 623
,[5] Introduction to symplectic field theory, Geom. Funct. Anal. (2000) 560
, , ,[6] Planar open book decompositions and contact structures, Int. Math. Res. Not. (2004) 4255
,[7] Contact geometry, from: "Handbook of differential geometry. Vol. II", Elsevier/North-Holland, Amsterdam (2006) 315
,[8] Lecture given at Georgia Topology conference (2001)
,[9] Géométrie de contact: de la dimension trois vers les dimensions supérieures, from: "Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002)", Higher Ed. Press (2002) 405
,[10] Pseudoholomorphic curves in symplectizations with applications to the Weinstein conjecture in dimension three, Invent. Math. 114 (1993) 515
,[11] Properties of pseudoholomorphic curves in symplectisations. I. Asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 337
, , ,[12] Properties of pseudo-holomorphic curves in symplectisations. II. Embedding controls and algebraic invariants, Geom. Funct. Anal. 5 (1995) 270
, , ,[13] Properties of pseudoholomorphic curves in symplectizations. III. Fredholm theory, from: "Topics in nonlinear analysis", Progr. Nonlinear Differential Equations Appl. 35, Birkhäuser (1999) 381
, , ,[14] Properties of pseudoholomorphic curves in symplectisation. IV. Asymptotics with degeneracies, from: "Contact and symplectic geometry (Cambridge, 1994)", Publ. Newton Inst. 8, Cambridge Univ. Press (1996) 78
, , ,[15] A characterisation of the tight three-sphere, Duke Math. J. 81 (1995)
, , ,[16] Finite energy foliations of tight three-spheres and Hamiltonian dynamics, Ann. of Math. $(2)$ 157 (2003) 125
, , ,[17] Symplectic invariants and Hamiltonian dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks], Birkhäuser Verlag (1994)
, ,[18] Gromov's compactness theorem for pseudo-holomorphic curves, Progress in Mathematics 151, Birkhäuser Verlag (1997)
,[19] A representation of orientable combinatorial $3$–manifolds, Ann. of Math. $(2)$ 76 (1962) 531
,[20] Sur quelques propriétés des formes différentielles en dimension trois, PhD thesis, Strasbourg (1971)
,[21] Structures de contact sur les fibrés principaux en cercles de dimension trois, Ann. Inst. Fourier (Grenoble) 27 (1977) 1
,[22] Formes de contact sur les variétés de dimension $3$, from: "Proceedings of Liverpool Singularities Symposium, II (1969/1970)", Springer (1971)
,[23] $J$–holomorphic curves and symplectic topology, American Mathematical Society Colloquium Publications 52, American Mathematical Society (2004)
, ,[24] Lectures on the topology of $3$–manifolds. An introduction to the Casson invariant, de Gruyter Textbook, Walter de Gruyter Co. (1999)
,[25] Geometry of Riemann surfaces and Teichmüller spaces, North–Holland Mathematics Studies, North–Holland Publishing Co. (1992)
, ,[26] Intersection theory of finite energy surfaces, PhD thesis, New York University (2005)
,[27] Modifications and cobounding manifolds, Canad. J. Math. 12 (1960) 503
,[28] Punctured holomorphic curves with boundary in $3$–manifolds: Fredholm theory and embededdness
,[29] Finite energy foliations and surgery on transverse links, PhD thesis, New York University (2005)
,[30] Filling by holomorphic curves in symplectic $4$–manifolds, Trans. Amer. Math. Soc. 350 (1998) 213
,Cité par Sources :