Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Pursuing our investigations on the relations between Thompson groups and mapping class groups, we introduce the group (and its companion ) which is an extension of the Ptolemy–Thompson group by the braid group on infinitely many strands. We prove that is a finitely presented group by constructing a complex on which it acts cocompactly with finitely presented stabilizers, and derive from it an explicit presentation. The groups and are in the same relation with respect to each other as the braid groups and , for infinitely many strands . We show that both groups embed as groups of homeomorphisms of the circle and their word problem is solvable.
Funar, Louis 1 ; Kapoudjian, Christophe 2
@article{GT_2008_12_1_a11, author = {Funar, Louis and Kapoudjian, Christophe}, title = {The braided {Ptolemy{\textendash}Thompson} group is finitely presented}, journal = {Geometry & topology}, pages = {475--530}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2008}, doi = {10.2140/gt.2008.12.475}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.475/} }
TY - JOUR AU - Funar, Louis AU - Kapoudjian, Christophe TI - The braided Ptolemy–Thompson group is finitely presented JO - Geometry & topology PY - 2008 SP - 475 EP - 530 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.475/ DO - 10.2140/gt.2008.12.475 ID - GT_2008_12_1_a11 ER -
Funar, Louis; Kapoudjian, Christophe. The braided Ptolemy–Thompson group is finitely presented. Geometry & topology, Tome 12 (2008) no. 1, pp. 475-530. doi : 10.2140/gt.2008.12.475. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.475/
[1] Theory of braids, Ann. of Math. $(2)$ 48 (1947) 101
,[2] On the lego-Teichmüller game, Transform. Groups 5 (2000) 207
, ,[3] Solution of the generalized conjugacy problem for words in $C(p)(q)$–groups, Izv. Tul. Gos. Univ. Ser. Mat. Mekh. Inform. 4 (1998) 5
,[4] A new approach to the word and conjugacy problems in the braid groups, Adv. Math. 139 (1998) 322
, , ,[5] The Algebra of Strand Splitting. I. A Braided Version of Thompson's Group V
,[6] The chameleon groups of Richard J. Thompson: automorphisms and dynamics, Inst. Hautes Études Sci. Publ. Math. (1996)
,[7] Presentations for groups acting on simply-connected complexes, J. Pure Appl. Algebra 32 (1984) 1
,[8] Braiding and tangling the chessboard complex
,[9] Circular groups, planar groups, and the Euler class, from: "Proceedings of the Casson Fest", Geom. Topol. Monogr. 7, Geom. Topol. Publ., Coventry (2004) 431
,[10] Introductory notes on Richard Thompson's groups, Enseign. Math. $(2)$ 42 (1996) 215
, , ,[11] Endlichkeitseigeinschaften gewiser Gruppen von Zöpfen unendlicher Ordnung, PhD thesis, Frankfurt (2000)
,[12] Geometric presentations for Thompson's groups, J. Pure Appl. Algebra 203 (2005) 1
,[13] The group of parenthesized braids, Adv. Math. 205 (2006) 354
,[14] Why are braids orderable?, Panoramas et Synthèses 14, Société Mathématique de France (2002)
, , , ,[15] Three-page representation of links, Uspekhi Mat. Nauk 53 (1998) 237
,[16] Recognition algorithms in knot theory, Uspekhi Mat. Nauk 58 (2003) 45
,[17] Word processing in groups, Jones and Bartlett Publishers (1992)
, , , , , ,[18] Finiteness and $\mathrm CAT(0)$ properties of diagram groups, Topology 42 (2003) 1065
,[19] Dual Teichmüller spaces
,[20] On the groupoid of transformations of rigid structures on surfaces, J. Math. Sci. Univ. Tokyo 6 (1999) 599
, ,[21] The Ptolemy–Thompson group is asynchronously combable
, ,[22] On a universal mapping class group of genus zero, Geom. Funct. Anal. 14 (2004) 965
, ,[23] Small cancellation theory and automatic groups. II, Invent. Math. 105 (1991) 641
, ,[24] Sur un groupe remarquable de difféomorphismes du cercle, Comment. Math. Helv. 62 (1987) 185
, ,[25] An acyclic extension of the braid group, Comment. Math. Helv. 66 (1991) 109
, ,[26] Automata, dynamical systems, and groups, Tr. Mat. Inst. Steklova 231 (2000) 134
, , ,[27] Diagram groups, Mem. Amer. Math. Soc. 130 (1997)
, ,[28] An extension of the Burau representation to a mapping class group associated to Thompson's group $T$, from: "Geometry and dynamics", Contemp. Math. 389, Amer. Math. Soc. (2005) 141
, ,[29] Affine structures and non-archimedean spaces
, ,[30] The universal Ptolemy-Teichmüller groupoid, from: "Geometric Galois actions, 2", London Math. Soc. Lecture Note Ser. 243, Cambridge Univ. Press (1997) 325
, ,[31] Fast algorithms for the recognition and comparison of braids, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 279 (2001) 197, 250
,[32] On the $2$-generation of certain finitely presented infinite simple groups, J. London Math. Soc. $(2)$ 16 (1977) 229
,[33] The conjugacy problem in wreath products and free metabelian groups, Trans. Amer. Math. Soc. 121 (1966) 329
,[34] Mapping class groups are automatic, Ann. of Math. $(2)$ 142 (1995) 303
,[35] The universal Ptolemy group and its completions, from: "Geometric Galois actions, 2", London Math. Soc. Lecture Note Ser. 243, Cambridge Univ. Press (1997) 293
,[36] Combinatorics of train tracks, Annals of Mathematics Studies 125, Princeton University Press (1992)
, ,[37] A course in the theory of groups, Graduate Texts in Mathematics 80, Springer (1996)
,[38] Graphes planaires et présentations des groupes de tresses, Math. Z. 214 (1993) 477
,[39] Diagram groups, braid groups, and orderability, J. Knot Theory Ramifications 12 (2003) 321
,[40] Arithmetic groups of higher $\mathbf{Q}$-rank cannot act on $1$-manifolds, Proc. Amer. Math. Soc. 122 (1994) 333
,Cité par Sources :