The braided Ptolemy–Thompson group is finitely presented
Geometry & topology, Tome 12 (2008) no. 1, pp. 475-530.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Pursuing our investigations on the relations between Thompson groups and mapping class groups, we introduce the group T (and its companion T) which is an extension of the Ptolemy–Thompson group T by the braid group B on infinitely many strands. We prove that T is a finitely presented group by constructing a complex on which it acts cocompactly with finitely presented stabilizers, and derive from it an explicit presentation. The groups T and T are in the same relation with respect to each other as the braid groups Bn+1 and Bn, for infinitely many strands n. We show that both groups embed as groups of homeomorphisms of the circle and their word problem is solvable.

DOI : 10.2140/gt.2008.12.475
Keywords: braid groups, mapping class groups, infinite surface, Thompson group

Funar, Louis 1 ; Kapoudjian, Christophe 2

1 Institut Fourier BP 74, UMR 5582, University of Grenoble I, 38402 Saint-Martin-d’Hères cedex, France
2 Laboratoire Emile Picard, UMR 5580, University of Toulouse III, 31062 Toulouse cedex 4, France
@article{GT_2008_12_1_a11,
     author = {Funar, Louis and Kapoudjian, Christophe},
     title = {The braided {Ptolemy{\textendash}Thompson} group is finitely presented},
     journal = {Geometry & topology},
     pages = {475--530},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2008},
     doi = {10.2140/gt.2008.12.475},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.475/}
}
TY  - JOUR
AU  - Funar, Louis
AU  - Kapoudjian, Christophe
TI  - The braided Ptolemy–Thompson group is finitely presented
JO  - Geometry & topology
PY  - 2008
SP  - 475
EP  - 530
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.475/
DO  - 10.2140/gt.2008.12.475
ID  - GT_2008_12_1_a11
ER  - 
%0 Journal Article
%A Funar, Louis
%A Kapoudjian, Christophe
%T The braided Ptolemy–Thompson group is finitely presented
%J Geometry & topology
%D 2008
%P 475-530
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.475/
%R 10.2140/gt.2008.12.475
%F GT_2008_12_1_a11
Funar, Louis; Kapoudjian, Christophe. The braided Ptolemy–Thompson group is finitely presented. Geometry & topology, Tome 12 (2008) no. 1, pp. 475-530. doi : 10.2140/gt.2008.12.475. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.475/

[1] E Artin, Theory of braids, Ann. of Math. $(2)$ 48 (1947) 101

[2] B Bakalov, A Kirillov Jr., On the lego-Teichmüller game, Transform. Groups 5 (2000) 207

[3] V N Bezverkhniĭ, Solution of the generalized conjugacy problem for words in $C(p)(q)$–groups, Izv. Tul. Gos. Univ. Ser. Mat. Mekh. Inform. 4 (1998) 5

[4] J Birman, K H Ko, S J Lee, A new approach to the word and conjugacy problems in the braid groups, Adv. Math. 139 (1998) 322

[5] M G Brin, The Algebra of Strand Splitting. I. A Braided Version of Thompson's Group V

[6] M G Brin, The chameleon groups of Richard J. Thompson: automorphisms and dynamics, Inst. Hautes Études Sci. Publ. Math. (1996)

[7] K S Brown, Presentations for groups acting on simply-connected complexes, J. Pure Appl. Algebra 32 (1984) 1

[8] K U Bux, Braiding and tangling the chessboard complex

[9] D Calegari, Circular groups, planar groups, and the Euler class, from: "Proceedings of the Casson Fest", Geom. Topol. Monogr. 7, Geom. Topol. Publ., Coventry (2004) 431

[10] J W Cannon, W J Floyd, W R Parry, Introductory notes on Richard Thompson's groups, Enseign. Math. $(2)$ 42 (1996) 215

[11] F Degenhardt, Endlichkeitseigeinschaften gewiser Gruppen von Zöpfen unendlicher Ordnung, PhD thesis, Frankfurt (2000)

[12] P Dehornoy, Geometric presentations for Thompson's groups, J. Pure Appl. Algebra 203 (2005) 1

[13] P Dehornoy, The group of parenthesized braids, Adv. Math. 205 (2006) 354

[14] P Dehornoy, I Dynnikov, D Rolfsen, B Wiest, Why are braids orderable?, Panoramas et Synthèses 14, Société Mathématique de France (2002)

[15] I A Dynnikov, Three-page representation of links, Uspekhi Mat. Nauk 53 (1998) 237

[16] I A Dynnikov, Recognition algorithms in knot theory, Uspekhi Mat. Nauk 58 (2003) 45

[17] D B A Epstein, J W Cannon, D F Holt, S V F Levy, M S Paterson, W P Thurston, Word processing in groups, Jones and Bartlett Publishers (1992)

[18] D S Farley, Finiteness and $\mathrm CAT(0)$ properties of diagram groups, Topology 42 (2003) 1065

[19] V Fock, Dual Teichmüller spaces

[20] L Funar, R Gelca, On the groupoid of transformations of rigid structures on surfaces, J. Math. Sci. Univ. Tokyo 6 (1999) 599

[21] L Funar, C Kapoudjian, The Ptolemy–Thompson group is asynchronously combable

[22] L Funar, C Kapoudjian, On a universal mapping class group of genus zero, Geom. Funct. Anal. 14 (2004) 965

[23] S M Gersten, H Short, Small cancellation theory and automatic groups. II, Invent. Math. 105 (1991) 641

[24] É Ghys, V Sergiescu, Sur un groupe remarquable de difféomorphismes du cercle, Comment. Math. Helv. 62 (1987) 185

[25] P Greenberg, V Sergiescu, An acyclic extension of the braid group, Comment. Math. Helv. 66 (1991) 109

[26] R I Grigorchuk, V V Nekrashevich, V I Sushchanskiĭ, Automata, dynamical systems, and groups, Tr. Mat. Inst. Steklova 231 (2000) 134

[27] V Guba, M Sapir, Diagram groups, Mem. Amer. Math. Soc. 130 (1997)

[28] C Kapoudjian, V Sergiescu, An extension of the Burau representation to a mapping class group associated to Thompson's group $T$, from: "Geometry and dynamics", Contemp. Math. 389, Amer. Math. Soc. (2005) 141

[29] M Kontsevich, Y Soibelman, Affine structures and non-archimedean spaces

[30] P Lochak, L Schneps, The universal Ptolemy-Teichmüller groupoid, from: "Geometric Galois actions, 2", London Math. Soc. Lecture Note Ser. 243, Cambridge Univ. Press (1997) 325

[31] A V Malyutin, Fast algorithms for the recognition and comparison of braids, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 279 (2001) 197, 250

[32] D R Mason, On the $2$-generation of certain finitely presented infinite simple groups, J. London Math. Soc. $(2)$ 16 (1977) 229

[33] J Matthews, The conjugacy problem in wreath products and free metabelian groups, Trans. Amer. Math. Soc. 121 (1966) 329

[34] L Mosher, Mapping class groups are automatic, Ann. of Math. $(2)$ 142 (1995) 303

[35] R C Penner, The universal Ptolemy group and its completions, from: "Geometric Galois actions, 2", London Math. Soc. Lecture Note Ser. 243, Cambridge Univ. Press (1997) 293

[36] R C Penner, J L Harer, Combinatorics of train tracks, Annals of Mathematics Studies 125, Princeton University Press (1992)

[37] D J S Robinson, A course in the theory of groups, Graduate Texts in Mathematics 80, Springer (1996)

[38] V Sergiescu, Graphes planaires et présentations des groupes de tresses, Math. Z. 214 (1993) 477

[39] B Wiest, Diagram groups, braid groups, and orderability, J. Knot Theory Ramifications 12 (2003) 321

[40] D Witte, Arithmetic groups of higher $\mathbf{Q}$-rank cannot act on $1$-manifolds, Proc. Amer. Math. Soc. 122 (1994) 333

Cité par Sources :