Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
If is either a connected Lie group, or a finitely generated solvable group with exponential growth, we show that contains a quasi-isometrically embedded free sub-semigroup on 2 generators.
de Cornulier, Yves 1 ; Tessera, Romain 2
@article{GT_2008_12_1_a10, author = {de Cornulier, Yves and Tessera, Romain}, title = {Quasi-isometrically embedded free sub-semigroups}, journal = {Geometry & topology}, pages = {461--473}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2008}, doi = {10.2140/gt.2008.12.461}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.461/} }
TY - JOUR AU - de Cornulier, Yves AU - Tessera, Romain TI - Quasi-isometrically embedded free sub-semigroups JO - Geometry & topology PY - 2008 SP - 461 EP - 473 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.461/ DO - 10.2140/gt.2008.12.461 ID - GT_2008_12_1_a10 ER -
de Cornulier, Yves; Tessera, Romain. Quasi-isometrically embedded free sub-semigroups. Geometry & topology, Tome 12 (2008) no. 1, pp. 461-473. doi : 10.2140/gt.2008.12.461. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.461/
[1] Random walks on free periodic groups, Math. USSR Izvestiya 21 (1983) 425
,[2] Every graph with a positive Cheeger constant contains a tree with a positive Cheeger constant, Geom. Funct. Anal. 7 (1997) 403
, ,[3] Groupes et algèbres de Lie. Chapitres 4, 5 et 6, Éléments de mathématique, Masson (1981) 290
,[4] The metrical interpretation of superreflexivity in Banach spaces, Israel J. Math. 56 (1986) 222
,[5] On uniform exponential growth for solvable groups, Pure and Applied Math Quarterly 3(4) (2007) 949
,[6] The extrinsic geometry of subgroups and the generalized word problem, Proc. London Math. Soc. $(3)$ 68 (1994) 577
,[7] Asymptotic invariants of infinite groups, from: "Geometric group theory, Vol. 2 (Sussex, 1991)", London Math. Soc. Lecture Note Ser. 182, Cambridge Univ. Press (1993) 1
,[8] Soluble groups with every proper quotient polycyclic, Illinois J. Math. 22 (1978) 90
,[9] On the distortion of subgroups of finitely presented groups, Mat. Sb. 188 (1997) 51
,[10] Subgroup distortions in nilpotent groups, Comm. Algebra 29 (2001) 5439
,[11] Small cancellations over relatively hyperbolic groups and embedding theorems
,[12] Invariant measures and growth conditions, Trans. Amer. Math. Soc. 193 (1974) 33
,[13] Asymptotic isoperimetry on groups and uniform embeddings into Banach spaces
,[14] Large-scale Sobolev inequalities on metric measure spaces
,[15] Free subgroups in linear groups, J. Algebra 20 (1972) 250
,Cité par Sources :