Quakebend deformations in complex hyperbolic quasi-Fuchsian space
Geometry & topology, Tome 12 (2008) no. 1, pp. 431-459.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We study quakebend deformations in complex hyperbolic quasi-Fuchsian space Q(Σ) of a closed surface Σ of genus g > 1, that is the space of discrete, faithful, totally loxodromic and geometrically finite representations of the fundamental group of Σ into the group of isometries of complex hyperbolic space. Emanating from an –Fuchsian point ρ Q(Σ), we construct curves associated to complex hyperbolic quakebending of ρ and we prove that we may always find an open neighborhood U(ρ) of ρ in Q(Σ) containing pieces of such curves. Moreover, we present generalisations of the well known Wolpert–Kerckhoff formulae for the derivatives of geodesic length function in Teichmüller space.

DOI : 10.2140/gt.2008.12.431
Keywords: complex hyperbolic, bending

Platis, Ioannis D 1

1 Department of Mathematics, Aristotle University of Salonica, Salonica, Greece
@article{GT_2008_12_1_a9,
     author = {Platis, Ioannis D},
     title = {Quakebend deformations in complex hyperbolic {quasi-Fuchsian} space},
     journal = {Geometry & topology},
     pages = {431--459},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2008},
     doi = {10.2140/gt.2008.12.431},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.431/}
}
TY  - JOUR
AU  - Platis, Ioannis D
TI  - Quakebend deformations in complex hyperbolic quasi-Fuchsian space
JO  - Geometry & topology
PY  - 2008
SP  - 431
EP  - 459
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.431/
DO  - 10.2140/gt.2008.12.431
ID  - GT_2008_12_1_a9
ER  - 
%0 Journal Article
%A Platis, Ioannis D
%T Quakebend deformations in complex hyperbolic quasi-Fuchsian space
%J Geometry & topology
%D 2008
%P 431-459
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.431/
%R 10.2140/gt.2008.12.431
%F GT_2008_12_1_a9
Platis, Ioannis D. Quakebend deformations in complex hyperbolic quasi-Fuchsian space. Geometry & topology, Tome 12 (2008) no. 1, pp. 431-459. doi : 10.2140/gt.2008.12.431. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.431/

[1] B Apanasov, Bending deformations of complex hyperbolic surfaces, J. Reine Angew. Math. 492 (1997) 75

[2] D B A Epstein, A Marden, Convex hulls in hyperbolic space, a theorem of Sullivan, and measured pleated surfaces, from: "Analytical and geometric aspects of hyperbolic space (Coventry/Durham, 1984)", London Math. Soc. Lecture Note Ser. 111, Cambridge Univ. Press (1987) 113

[3] E Falbel, R A Wentworth, Eigenvalues of products of unitary matrices and Lagrangian involutions, Topology 45 (2006) 65

[4] W M Goldman, Complex hyperbolic geometry, Oxford Mathematical Monographs, The Clarendon Press Oxford University Press (1999)

[5] W M Goldman, M Kapovich, B Leeb, Complex hyperbolic manifolds homotopy equivalent to a Riemann surface, Comm. Anal. Geom. 9 (2001) 61

[6] S P Kerckhoff, The Nielsen realization problem, Ann. of Math. $(2)$ 117 (1983) 235

[7] C Kourouniotis, Deformations of hyperbolic structures, Math. Proc. Cambridge Philos. Soc. 98 (1985) 247

[8] C Kourouniotis, Bending in the space of quasi-Fuchsian structures, Glasgow Math. J. 33 (1991) 41

[9] C Kourouniotis, The geometry of bending quasi-Fuchsian groups, from: "Discrete groups and geometry (Birmingham, 1991)", London Math. Soc. Lecture Note Ser. 173, Cambridge Univ. Press (1992) 148

[10] J R Parker, I D Platis, Open sets of maximal dimension in complex hyperbolic quasi-Fuchsian space, J. Differential Geom. 73 (2006) 319

[11] J R Parker, I D Platis, Complex hyperbolic Fenchel–Nielsen coordinates, Topology (2007)

[12] J R Parker, C Series, Bending formulae for convex hull boundaries, J. Anal. Math. 67 (1995) 165

[13] I D Platis, Complex symplectic geometry of quasi-Fuchsian space, Geom. Dedicata 87 (2001) 17

[14] C Series, An extension of Wolpert's derivative formula, Pacific J. Math. 197 (2001) 223

[15] W P Thurston, Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series 35, Princeton University Press (1997)

[16] D Toledo, Representations of surface groups in complex hyperbolic space, J. Differential Geom. 29 (1989) 125

[17] P Will, Lagrangian decomposability of some two-generator subgroups of $\mathrm PU(2,1)$, C. R. Math. Acad. Sci. Paris 340 (2005) 353

[18] S Wolpert, The Fenchel–Nielsen deformation, Ann. of Math. $(2)$ 115 (1982) 501

[19] S Wolpert, On the symplectic geometry of deformations of a hyperbolic surface, Ann. of Math. $(2)$ 117 (1983) 207

Cité par Sources :