Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
For any group G, we define a new characteristic series related to the derived series, that we call the torsion-free derived series of G. Using this series and the Cheeger–Gromov –invariant, we obtain new real-valued homology cobordism invariants for closed –dimensional manifolds. For –dimensional manifolds, we show that is a linearly independent set and for each , the image of is an infinitely generated and dense subset of .
In their seminal work on knot concordance, T Cochran, K Orr and P Teichner define a filtration of the –component (string) link concordance group, called the –solvable filtration. They also define a grope filtration . We show that vanishes for –solvable links. Using this, and the nontriviality of , we show that for each , the successive quotients of the –solvable filtration of the link concordance group contain an infinitely generated subgroup. We also establish a similar result for the grope filtration. We remark that for knots (), the successive quotients of the –solvable filtration are known to be infinite. However, for knots, it is unknown if these quotients have infinite rank when .
Harvey, Shelly L 1
@article{GT_2008_12_1_a8, author = {Harvey, Shelly L}, title = {Homology cobordism invariants and the {Cochran{\textendash}Orr{\textendash}Teichner} filtration of the link concordance group}, journal = {Geometry & topology}, pages = {387--430}, publisher = {mathdoc}, volume = {12}, number = {1}, year = {2008}, doi = {10.2140/gt.2008.12.387}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.387/} }
TY - JOUR AU - Harvey, Shelly L TI - Homology cobordism invariants and the Cochran–Orr–Teichner filtration of the link concordance group JO - Geometry & topology PY - 2008 SP - 387 EP - 430 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.387/ DO - 10.2140/gt.2008.12.387 ID - GT_2008_12_1_a8 ER -
%0 Journal Article %A Harvey, Shelly L %T Homology cobordism invariants and the Cochran–Orr–Teichner filtration of the link concordance group %J Geometry & topology %D 2008 %P 387-430 %V 12 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.387/ %R 10.2140/gt.2008.12.387 %F GT_2008_12_1_a8
Harvey, Shelly L. Homology cobordism invariants and the Cochran–Orr–Teichner filtration of the link concordance group. Geometry & topology, Tome 12 (2008) no. 1, pp. 387-430. doi : 10.2140/gt.2008.12.387. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.387/
[1] Link cobordism, Comment. Math. Helv. 55 (1980) 20
, ,[2] Signature invariants of covering links, Trans. Amer. Math. Soc. 358 (2006) 3399
, ,[3] Knot signature functions are independent, Proc. Amer. Math. Soc. 132 (2004) 2809
, ,[4] Algebraic and Heegaard Floer invariants of knots with slice Bing doubles, to appear in Math. Proc. Camb. Phil. Soc.
, , ,[5] On invariants of Hirzebruch and Cheeger–Gromov, Geom. Topol. 7 (2003) 311
, ,[6] Derivatives of links: Milnor's concordance invariants and Massey's products, Mem. Amer. Math. Soc. 84 (1990)
,[7] Noncommutative knot theory, Algebr. Geom. Topol. 4 (2004) 347
,[8] Applications of Donaldson's theorems to classical knot concordance, homology $3$-spheres and property $P$, Topology 27 (1988) 495
, ,[9] Homology and derived series of groups, Geom. Topol. 9 (2005) 2159
, ,[10] Not all links are concordant to boundary links, Ann. of Math. $(2)$ 138 (1993) 519
, ,[11] Knot concordance, Whitney towers and $L^2$-signatures, Ann. of Math. $(2)$ 157 (2003) 433
, , ,[12] Structure in the classical knot concordance group, Comment. Math. Helv. 79 (2004) 105
, , ,[13] Knot concordance and von Neumann $\rho$-invariants, Duke Math. J. 137 (2007) 337
, ,[14] Free rings and their relations, London Mathematical Society Monographs 19, Academic Press [Harcourt Brace Jovanovich Publishers] (1985)
,[15] Topology of 4-manifolds, Princeton Mathematical Series 39, Princeton University Press (1990)
, ,[16] $4$-manifold topology. I. Subexponential groups, Invent. Math. 122 (1995) 509
, ,[17] Link concordance, boundary link concordance and eta-invariants, Math. Proc. Cambridge Philos. Soc. 138 (2005) 437
,[18] Claspers and finite type invariants of links, Geom. Topol. 4 (2000) 1
,[19] Higher-order polynomial invariants of 3-manifolds giving lower bounds for the Thurston norm, Topology 44 (2005) 895
,[20] On the homotopy of nonnilpotent spaces, Math. Z. 178 (1981) 115
,[21] Every connected space has the homology of a $K(\pi ,1)$, Topology 15 (1976) 253
, ,[22] Seifert matrices and boundary link cobordisms, Trans. Amer. Math. Soc. 299 (1987) 657
,[23] Cobordisme d'enlacements de disques, Mém. Soc. Math. France (N.S.) (1988)
,[24] Knot cobordism groups in codimension two, Comment. Math. Helv. 44 (1969) 229
,[25] Concordance of Boundary Links, J. Knot Theory Ramifications 16 (2007) 1111
,[26] Various $L^2$-signatures and a topological $L^2$-signature theorem, from: "High-dimensional manifold topology", World Sci. Publ., River Edge, NJ (2003) 362
, ,[27] On boundary-link cobordism, Math. Proc. Cambridge Philos. Soc. 101 (1987) 259
,[28] On a certain move generating link-homology, Math. Ann. 284 (1989) 75
, ,[29] The algebraic structure of group rings, Robert E. Krieger Publishing Co. (1985)
,[30] Invariants of boundary link cobordism, Mem. Amer. Math. Soc. 165 (2003)
,[31] Homology and central series of groups, J. Algebra 2 (1965) 170
,[32] Rings of quotients, Springer (1975)
,[33] Homological methods applied to the derived series of groups, Comment. Math. Helv. 49 (1974) 302
,Cité par Sources :