Floer homology and surface decompositions
Geometry & topology, Tome 12 (2008) no. 1, pp. 299-350.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Sutured Floer homology, denoted by SFH, is an invariant of balanced sutured manifolds previously defined by the author. In this paper we give a formula that shows how this invariant changes under surface decompositions. In particular, if (M,γ) (M,γ) is a sutured manifold decomposition then SFH(M,γ) is a direct summand of SFH(M,γ). To prove the decomposition formula we give an algorithm that computes SFH(M,γ) from a balanced diagram defining (M,γ) that generalizes the algorithm of Sarkar and Wang.

As a corollary we obtain that if (M,γ) is taut then SFH(M,γ)0. Other applications include simple proofs of a result of Ozsváth and Szabó that link Floer homology detects the Thurston norm, and a theorem of Ni that knot Floer homology detects fibred knots. Our proofs do not make use of any contact geometry.

Moreover, using these methods we show that if K is a genus g knot in a rational homology 3–sphere Y whose Alexander polynomial has leading coefficient ag0 and if  rkHFK̂(Y,K,g) < 4 then Y N(K) admits a depth 2 taut foliation transversal to N(K).

DOI : 10.2140/gt.2008.12.299
Keywords: sutured manifold, Floer homology, surface decomposition

Juhász, András 1

1 Department of Mathematics, Princeton University, Princeton NJ 08544, USA
@article{GT_2008_12_1_a6,
     author = {Juh\'asz, Andr\'as},
     title = {Floer homology and surface decompositions},
     journal = {Geometry & topology},
     pages = {299--350},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2008},
     doi = {10.2140/gt.2008.12.299},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.299/}
}
TY  - JOUR
AU  - Juhász, András
TI  - Floer homology and surface decompositions
JO  - Geometry & topology
PY  - 2008
SP  - 299
EP  - 350
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.299/
DO  - 10.2140/gt.2008.12.299
ID  - GT_2008_12_1_a6
ER  - 
%0 Journal Article
%A Juhász, András
%T Floer homology and surface decompositions
%J Geometry & topology
%D 2008
%P 299-350
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.299/
%R 10.2140/gt.2008.12.299
%F GT_2008_12_1_a6
Juhász, András. Floer homology and surface decompositions. Geometry & topology, Tome 12 (2008) no. 1, pp. 299-350. doi : 10.2140/gt.2008.12.299. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.299/

[1] D Cooper, D D Long, Virtually Haken Dehn-filling, J. Differential Geom. 52 (1999) 173

[2] D Gabai, Foliations and the topology of 3–manifolds, J. Differential Geom. 18 (1983) 445

[3] D Gabai, The Murasugi sum is a natural geometric operation, from: "Low-dimensional topology (San Francisco, CA, 1981)", Contemp. Math. 20, Amer. Math. Soc. (1983) 131

[4] D Gabai, Foliations and the topology of 3–manifolds III, J. Differential Geom. 26 (1987) 479

[5] D Gabai, Problems in foliations and laminations, from: "Geometric topology (Athens, GA, 1993)", AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 1

[6] P Ghiggini, Knot Floer homology detects genus-one fibred knots

[7] A Juhász, Holomorphic discs and sutured manifolds, Algebr. Geom. Topol. 6 (2006) 1429

[8] R Lipshitz, A cylindrical reformulation of Heegaard Floer homology, Geom. Topol. 10 (2006) 955

[9] Y Ni, Knot Floer homology detects fibred knots

[10] Y Ni, Sutured Heegaard diagrams for knots, Algebr. Geom. Topol. 6 (2006) 513

[11] P Ozsváth, Z Szabó, Holomorphic disks, link invariants, and the multi-variable Alexander polynomial

[12] P Ozsváth, Z Szabó, Link Floer homology and the Thurston norm

[13] P Ozsváth, Z Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004) 311

[14] P Ozsváth, Z Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. $(2)$ 159 (2004) 1159

[15] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. $(2)$ 159 (2004) 1027

[16] S. Sarkar, J. Wang, An algorithm for computing some Heegaard Floer homologies

[17] M Scharlemann, Sutured manifolds and generalized Thurston norms, J. Differential Geom. 29 (1989) 557

Cité par Sources :