Notes on Perelman’s papers
Geometry & topology, Tome 12 (2008) no. 5, pp. 2587-2855.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

These are detailed notes on Perelman’s papers “The entropy formula for the Ricci flow and its geometric applications” [?] and “Ricci flow with surgery on three-manifolds” [?].

DOI : 10.2140/gt.2008.12.2587
Keywords: Perelman, three-manifold, geometrization theorem, Poincaré Conjecture, Ricci flow, Ricci flow with surgery, entropy formula, long-term behaviour

Kleiner, Bruce 1 ; Lott, John 2

1 Department of Mathematics, Yale University, New Haven, CT 06520-8283, USA
2 Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1109, USA
@article{GT_2008_12_5_a2,
     author = {Kleiner, Bruce and Lott, John},
     title = {Notes on {Perelman{\textquoteright}s} papers},
     journal = {Geometry & topology},
     pages = {2587--2855},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {2008},
     doi = {10.2140/gt.2008.12.2587},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2587/}
}
TY  - JOUR
AU  - Kleiner, Bruce
AU  - Lott, John
TI  - Notes on Perelman’s papers
JO  - Geometry & topology
PY  - 2008
SP  - 2587
EP  - 2855
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2587/
DO  - 10.2140/gt.2008.12.2587
ID  - GT_2008_12_5_a2
ER  - 
%0 Journal Article
%A Kleiner, Bruce
%A Lott, John
%T Notes on Perelman’s papers
%J Geometry & topology
%D 2008
%P 2587-2855
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2587/
%R 10.2140/gt.2008.12.2587
%F GT_2008_12_5_a2
Kleiner, Bruce; Lott, John. Notes on Perelman’s papers. Geometry & topology, Tome 12 (2008) no. 5, pp. 2587-2855. doi : 10.2140/gt.2008.12.2587. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2587/

[1] K Akutagawa, M Ishida, C Lebrun, Perelman's invariant, Ricci flow, and the Yamabe invariants of smooth manifolds, Arch. Math. $($Basel$)$ 88 (2007) 71

[2] G Anderson, B Chow, A pinching estimate for solutions of the linearized Ricci flow system on 3-manifolds, Calc. Var. Partial Differential Equations 23 (2005) 1

[3] M T Anderson, Scalar curvature and geometrization conjectures for $3$-manifolds, from: "Comparison geometry (Berkeley, CA, 1993–94)", Math. Sci. Res. Inst. Publ. 30, Cambridge Univ. Press (1997) 49

[4] M T Anderson, Scalar curvature and the existence of geometric structures on 3-manifolds. I, J. Reine Angew. Math. 553 (2002) 125

[5] M T Anderson, Canonical metrics on 3-manifolds and 4-manifolds, Asian J. Math. 10 (2006) 127

[6] S B Angenent, D Knopf, Precise asymptotics of the Ricci flow neckpinch, Comm. Anal. Geom. 15 (2007) 773

[7] W Ballmann, M Gromov, V Schroeder, Manifolds of nonpositive curvature, Progress in Mathematics 61, Birkhäuser (1985)

[8] W Beckner, Geometric asymptotics and the logarithmic Sobolev inequality, Forum Math. 11 (1999) 105

[9] L Bessières, G Besson, M Boileau, S Maillot, J Porti, Weak Collapsing and Geometrisation of Aspherical 3-Manifolds

[10] J P Bourguignon, Une stratification de l'espace des structures riemanniennes, Compositio Math. 30 (1975) 1

[11] D Burago, Y Burago, S Ivanov, A course in metric geometry, Graduate Studies in Mathematics 33, Amer. Math. Soc. (2001)

[12] Y Burago, M Gromov, G Perelman, A. D. Aleksandrov spaces with curvatures bounded below, Uspekhi Mat. Nauk 47 (1992) 3, 222

[13] E Calabi, An extension of E. Hopf's maximum principle with an application to Riemannian geometry, Duke Math. J. 25 (1958) 45

[14] H D Cao, B Chow, Recent developments on the Ricci flow, Bull. Amer. Math. Soc. $($N.S.$)$ 36 (1999) 59

[15] H D Cao, X P Zhu, A complete proof of the Poincaré and geometrization conjectures—application of the Hamilton-Perelman theory of the Ricci flow, Asian J. Math. 10 (2006) 165

[16] I Chavel, Riemannian geometry—a modern introduction, Cambridge Tracts in Mathematics 108, Cambridge University Press (1993)

[17] J Cheeger, D G Ebin, Comparison theorems in Riemannian geometry, North-Holland Mathematical Library 9, North-Holland Publishing Co. (1975)

[18] J Cheeger, D Gromoll, On the structure of complete manifolds of nonnegative curvature, Ann. of Math. $(2)$ 96 (1972) 413

[19] J Cheeger, M Gromov, M Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom. 17 (1982) 15

[20] B L Chen, X P Zhu, Uniqueness of the Ricci flow on complete noncompact manifolds, J. Differential Geom. 74 (2006) 119

[21] B Chow, D Knopf, The Ricci flow: an introduction, Mathematical Surveys and Monographs 110, Amer. Math. Soc. (2004)

[22] B Chow, P Lu, L Ni, Hamilton's Ricci flow, Graduate Studies in Mathematics 77, Amer. Math. Soc. (2006)

[23] T H Colding, W P Minicozzi Ii, Estimates for the extinction time for the Ricci flow on certain 3-manifolds and a question of Perelman, J. Amer. Math. Soc. 18 (2005) 561

[24] T H Colding, W P Minicozzi Ii, Width and Finite Extinction Time of Ricci Flow, Geom. Topol. 12 (2008) 2537

[25] J Dodziuk, Maximum principle for parabolic inequalities and the heat flow on open manifolds, Indiana Univ. Math. J. 32 (1983) 703

[26] J H Eschenburg, Local convexity and nonnegative curvature—Gromov's proof of the sphere theorem, Invent. Math. 84 (1986) 507

[27] R S Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982) 255

[28] R S Hamilton, The Ricci flow on surfaces, from: "Mathematics and general relativity (Santa Cruz, CA, 1986)", Contemp. Math. 71, Amer. Math. Soc. (1988) 237

[29] R S Hamilton, A compactness property for solutions of the Ricci flow, Amer. J. Math. 117 (1995) 545

[30] R S Hamilton, The formation of singularities in the Ricci flow, from: "Surveys in differential geometry, Vol. II (Cambridge, MA, 1993)", Int. Press, Cambridge, MA (1995) 7

[31] R S Hamilton, Four-manifolds with positive isotropic curvature, Comm. Anal. Geom. 5 (1997) 1

[32] R S Hamilton, Non-singular solutions of the Ricci flow on three-manifolds, Comm. Anal. Geom. 7 (1999) 695

[33] H Ishii, On the equivalence of two notions of weak solutions, viscosity solutions and distribution solutions, Funkcial. Ekvac. 38 (1995) 101

[34] V Kapovitch, Perelman's Stability Theorem, from: "Surveys in differential geometry, Vol. XI (Metric and Comparison Geometry)", Int. Press, Cambridge, MA (2007) 103

[35] B Kleiner, J Lott, Locally Collapsed $3$-Manifolds, to appear

[36] B Kleiner, J Lott, Notes and commentary on Perelman's Ricci flow papers

[37] P Lu, G Tian, Uniqueness of standard solutions in the work of Perelman

[38] S Matveev, Algorithmic topology and classification of 3-manifolds, Algorithms and Computation in Mathematics 9, Springer (2003)

[39] W H Meeks Iii, S T Yau, Topology of three-dimensional manifolds and the embedding problems in minimal surface theory, Ann. of Math. $(2)$ 112 (1980) 441

[40] J W Morgan, Recent progress on the Poincaré conjecture and the classification of 3-manifolds, Bull. Amer. Math. Soc. $($N.S.$)$ 42 (2005) 57

[41] J Morgan, G Tian, Completion of Perelman's proof of the geometrization conjecture

[42] J Morgan, G Tian, Ricci flow and the Poincaré conjecture, Clay Mathematics Monographs 3, Amer. Math. Soc. (2007)

[43] G D Mostow, Strong rigidity of locally symmetric spaces, Princeton University Press (1973)

[44] L Ni, The entropy formula for linear heat equation, J. Geom. Anal. 14 (2004) 87

[45] L Ni, A note on Perelman's LYH-type inequality, Comm. Anal. Geom. 14 (2006) 883

[46] G Perelman, The entropy formula for the Ricci flow and its geometric applications

[47] G Perelman, Ricci flow with surgery on three-manifolds

[48] G Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds

[49] G Prasad, Strong rigidity of $\mathbf{Q}$-rank $1$ lattices, Invent. Math. 21 (1973) 255

[50] M Reed, B Simon, Methods of modern mathematical physics. IV. Analysis of operators, Academic Press (1978)

[51] O S Rothaus, Logarithmic Sobolev inequalities and the spectrum of Schrödinger operators, J. Funct. Anal. 42 (1981) 110

[52] R Schoen, Estimates for stable minimal surfaces in three-dimensional manifolds, from: "Seminar on minimal submanifolds", Ann. of Math. Stud. 103, Princeton Univ. Press (1983) 111

[53] R Schoen, S T Yau, Complete three-dimensional manifolds with positive Ricci curvature and scalar curvature, from: "Seminar on Differential Geometry", Ann. of Math. Stud. 102, Princeton Univ. Press (1982) 209

[54] P Scott, The geometries of $3$-manifolds, Bull. London Math. Soc. 15 (1983) 401

[55] V Sharafutdinov, The Pogorelov–Klingenberg theorem for manifolds that are homeomorphic to $\mathbb{R}^n$, Siberian Math. J. 18 (1977) 649

[56] W X Shi, Deforming the metric on complete Riemannian manifolds, J. Differential Geom. 30 (1989) 223

[57] W X Shi, Ricci deformation of the metric on complete noncompact Riemannian manifolds, J. Differential Geom. 30 (1989) 303

[58] T Shioya, T Yamaguchi, Volume collapsed three-manifolds with a lower curvature bound, Math. Ann. 333 (2005) 131

[59] W P Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. $($N.S.$)$ 6 (1982) 357

[60] P Topping, Lectures on the Ricci flow, London Mathematical Society Lecture Note Series 325, Cambridge University Press (2006)

[61] R Ye, On the Uniqueness of 2-Dimensional $\kappa$-Solutions

[62] R Ye, On the $l$-function and the reduced volume of Perelman. I, Trans. Amer. Math. Soc. 360 (2008) 507

Cité par Sources :