Width and finite extinction time of Ricci flow
Geometry & topology, Tome 12 (2008) no. 5, pp. 2537-2586.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

This is an expository article with complete proofs intended for a general nonspecialist audience. The results are two-fold. First, we discuss a geometric invariant, that we call the width, of a manifold and show how it can be realized as the sum of areas of minimal 2–spheres. For instance, when M is a homotopy 3–sphere, the width is loosely speaking the area of the smallest 2–sphere needed to ‘pull over’ M. Second, we use this to conclude that Hamilton’s Ricci flow becomes extinct in finite time on any homotopy 3–sphere.

DOI : 10.2140/gt.2008.12.2537
Keywords: width, sweepout, min-max, Ricci flow, extinction, harmonic map, bubble convergence

Colding, Tobias H 1 ; Minicozzi II, William P 2

1 Department of Mathematics, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA, and, Courant Institute of Mathematical Sciences, 251 Mercer Street, New York, NY 10012, USA
2 Department of Mathematics, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
@article{GT_2008_12_5_a1,
     author = {Colding, Tobias H and Minicozzi II, William P},
     title = {Width and finite extinction time of {Ricci} flow},
     journal = {Geometry & topology},
     pages = {2537--2586},
     publisher = {mathdoc},
     volume = {12},
     number = {5},
     year = {2008},
     doi = {10.2140/gt.2008.12.2537},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2537/}
}
TY  - JOUR
AU  - Colding, Tobias H
AU  - Minicozzi II, William P
TI  - Width and finite extinction time of Ricci flow
JO  - Geometry & topology
PY  - 2008
SP  - 2537
EP  - 2586
VL  - 12
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2537/
DO  - 10.2140/gt.2008.12.2537
ID  - GT_2008_12_5_a1
ER  - 
%0 Journal Article
%A Colding, Tobias H
%A Minicozzi II, William P
%T Width and finite extinction time of Ricci flow
%J Geometry & topology
%D 2008
%P 2537-2586
%V 12
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2537/
%R 10.2140/gt.2008.12.2537
%F GT_2008_12_5_a1
Colding, Tobias H; Minicozzi II, William P. Width and finite extinction time of Ricci flow. Geometry & topology, Tome 12 (2008) no. 5, pp. 2537-2586. doi : 10.2140/gt.2008.12.2537. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2537/

[1] L Ahlfors, L Bers, Riemann's mapping theorem for variable metrics, Ann. of Math. $(2)$ 72 (1960) 385

[2] F J Almgren, The theory of varifolds, Mimeographed notes, Princeton (1965)

[3] G D Birkhoff, Dynamical systems with two degrees of freedom, Trans. Amer. Math. Soc. 18 (1917) 199

[4] G D Birkhoff, Dynamical systems, American Math. Soc. Coll. Publ. IX, American Mathematical Society (1927)

[5] T H Colding, C De Lellis, The min-max construction of minimal surfaces, from: "Surveys in differential geometry, Vol. VIII (Boston, MA, 2002)", Int. Press (2003) 75

[6] T H Colding, C De Lellis, W P Minicozzi Ii, Three circles theorems for Schrödinger operators on cylindrical ends and geometric applications, Comm. Pure Appl. Math. 61 (2008) 1540

[7] T H Colding, W P Minicozzi Ii, Minimal surfaces, Courant Lecture Notes in Math. 4, New York University Courant Inst. of Math. Sciences (1999)

[8] T H Colding, W P Minicozzi Ii, Estimates for the extinction time for the Ricci flow on certain $3$–manifolds and a question of Perelman, J. Amer. Math. Soc. 18 (2005) 561

[9] T H Colding, W P Minicozzi Ii, Width and mean curvature flow, Geom. Topol. 12 (2008) 2517

[10] C B Croke, Area and the length of the shortest closed geodesic, J. Differential Geom. 27 (1988) 1

[11] L C Evans, Partial differential equations, Graduate Studies in Math. 19, Amer. Math. Soc. (1998)

[12] M Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307

[13] R S Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982) 255

[14] R S Hamilton, The formation of singularities in the Ricci flow, from: "Surveys in differential geometry, Vol. II (Cambridge, MA, 1993)", Int. Press (1995) 7

[15] F Hélein, Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991) 591

[16] F Hélein, Harmonic maps, conservation laws and moving frames, Cambridge Tracts in Math. 150, Cambridge University Press (2002)

[17] J Jost, Two-dimensional geometric variational problems, Pure and Applied Math. (New York), Wiley-Interscience Publ. John Wiley Sons Ltd. (1991)

[18] B Kleiner, J Lott, Notes on Perelman's papers, Geom. Topol. 12 (2008) 2587

[19] C B Morrey Jr., On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938) 126

[20] C B Morrey Jr., Multiple integrals in the calculus of variations, Die Grund. der math. Wissenschaften 130, Springer (1966)

[21] J R Munkres, Topology: a first course, Prentice-Hall (1975)

[22] T H Parker, Bubble tree convergence for harmonic maps, J. Differential Geom. 44 (1996) 595

[23] T H Parker, J G Wolfson, Pseudo-holomorphic maps and bubble trees, J. Geom. Anal. 3 (1993) 63

[24] G Perelman, Ricci flow with surgery on three-manifolds

[25] G Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds

[26] J T Pitts, Existence and regularity of minimal surfaces on Riemannian manifolds, Math. Notes 27, Princeton University Press (1981)

[27] J Qing, Boundary regularity of weakly harmonic maps from surfaces, J. Funct. Anal. 114 (1993) 458

[28] T Rivière, Conservation laws for conformally invariant variational problems, Invent. Math. 168 (2007) 1

[29] H L Royden, Real analysis, The Macmillan Co. (1963)

[30] J Sacks, K Uhlenbeck, The existence of minimal immersions of $2$–spheres, Ann. of Math. $(2)$ 113 (1981) 1

[31] J H Sampson, Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup. $(4)$ 11 (1978) 211

[32] R Schoen, K Uhlenbeck, A regularity theory for harmonic maps, J. Differential Geom. 17 (1982) 307

[33] R Schoen, K Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom. 18 (1983) 253

[34] R Schoen, J Wolfson, Minimizing area among Lagrangian surfaces: the mapping problem, J. Differential Geom. 58 (2001) 1

[35] R Schoen, S T Yau, Lectures on harmonic maps, Conference Proceedings and Lecture Notes in Geometry and Topology, II, International Press (1997)

[36] H A Schwarz, Über einen Grenzübergang durch altirneirendes Verfahren, Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 15 (1870) 272

[37] H A Schwarz, Gesammelete Mathematische Abhandlungen, Springer (1890)

[38] M Struwe, On the evolution of harmonic mappings of Riemannian surfaces, Comment. Math. Helv. 60 (1985) 558

[39] H C Wente, An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl. 26 (1969) 318

Cité par Sources :