Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
This is an expository article with complete proofs intended for a general nonspecialist audience. The results are two-fold. First, we discuss a geometric invariant, that we call the width, of a manifold and show how it can be realized as the sum of areas of minimal –spheres. For instance, when is a homotopy –sphere, the width is loosely speaking the area of the smallest –sphere needed to ‘pull over’ . Second, we use this to conclude that Hamilton’s Ricci flow becomes extinct in finite time on any homotopy –sphere.
Colding, Tobias H 1 ; Minicozzi II, William P 2
@article{GT_2008_12_5_a1, author = {Colding, Tobias H and Minicozzi II, William P}, title = {Width and finite extinction time of {Ricci} flow}, journal = {Geometry & topology}, pages = {2537--2586}, publisher = {mathdoc}, volume = {12}, number = {5}, year = {2008}, doi = {10.2140/gt.2008.12.2537}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2537/} }
TY - JOUR AU - Colding, Tobias H AU - Minicozzi II, William P TI - Width and finite extinction time of Ricci flow JO - Geometry & topology PY - 2008 SP - 2537 EP - 2586 VL - 12 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2537/ DO - 10.2140/gt.2008.12.2537 ID - GT_2008_12_5_a1 ER -
Colding, Tobias H; Minicozzi II, William P. Width and finite extinction time of Ricci flow. Geometry & topology, Tome 12 (2008) no. 5, pp. 2537-2586. doi : 10.2140/gt.2008.12.2537. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2537/
[1] Riemann's mapping theorem for variable metrics, Ann. of Math. $(2)$ 72 (1960) 385
, ,[2] The theory of varifolds, Mimeographed notes, Princeton (1965)
,[3] Dynamical systems with two degrees of freedom, Trans. Amer. Math. Soc. 18 (1917) 199
,[4] Dynamical systems, American Math. Soc. Coll. Publ. IX, American Mathematical Society (1927)
,[5] The min-max construction of minimal surfaces, from: "Surveys in differential geometry, Vol. VIII (Boston, MA, 2002)", Int. Press (2003) 75
, ,[6] Three circles theorems for Schrödinger operators on cylindrical ends and geometric applications, Comm. Pure Appl. Math. 61 (2008) 1540
, , ,[7] Minimal surfaces, Courant Lecture Notes in Math. 4, New York University Courant Inst. of Math. Sciences (1999)
, ,[8] Estimates for the extinction time for the Ricci flow on certain $3$–manifolds and a question of Perelman, J. Amer. Math. Soc. 18 (2005) 561
, ,[9] Width and mean curvature flow, Geom. Topol. 12 (2008) 2517
, ,[10] Area and the length of the shortest closed geodesic, J. Differential Geom. 27 (1988) 1
,[11] Partial differential equations, Graduate Studies in Math. 19, Amer. Math. Soc. (1998)
,[12] Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307
,[13] Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982) 255
,[14] The formation of singularities in the Ricci flow, from: "Surveys in differential geometry, Vol. II (Cambridge, MA, 1993)", Int. Press (1995) 7
,[15] Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991) 591
,[16] Harmonic maps, conservation laws and moving frames, Cambridge Tracts in Math. 150, Cambridge University Press (2002)
,[17] Two-dimensional geometric variational problems, Pure and Applied Math. (New York), Wiley-Interscience Publ. John Wiley Sons Ltd. (1991)
,[18] Notes on Perelman's papers, Geom. Topol. 12 (2008) 2587
, ,[19] On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938) 126
,[20] Multiple integrals in the calculus of variations, Die Grund. der math. Wissenschaften 130, Springer (1966)
,[21] Topology: a first course, Prentice-Hall (1975)
,[22] Bubble tree convergence for harmonic maps, J. Differential Geom. 44 (1996) 595
,[23] Pseudo-holomorphic maps and bubble trees, J. Geom. Anal. 3 (1993) 63
, ,[24] Ricci flow with surgery on three-manifolds
,[25] Finite extinction time for the solutions to the Ricci flow on certain three-manifolds
,[26] Existence and regularity of minimal surfaces on Riemannian manifolds, Math. Notes 27, Princeton University Press (1981)
,[27] Boundary regularity of weakly harmonic maps from surfaces, J. Funct. Anal. 114 (1993) 458
,[28] Conservation laws for conformally invariant variational problems, Invent. Math. 168 (2007) 1
,[29] Real analysis, The Macmillan Co. (1963)
,[30] The existence of minimal immersions of $2$–spheres, Ann. of Math. $(2)$ 113 (1981) 1
, ,[31] Some properties and applications of harmonic mappings, Ann. Sci. École Norm. Sup. $(4)$ 11 (1978) 211
,[32] A regularity theory for harmonic maps, J. Differential Geom. 17 (1982) 307
, ,[33] Boundary regularity and the Dirichlet problem for harmonic maps, J. Differential Geom. 18 (1983) 253
, ,[34] Minimizing area among Lagrangian surfaces: the mapping problem, J. Differential Geom. 58 (2001) 1
, ,[35] Lectures on harmonic maps, Conference Proceedings and Lecture Notes in Geometry and Topology, II, International Press (1997)
, ,[36] Über einen Grenzübergang durch altirneirendes Verfahren, Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 15 (1870) 272
,[37] Gesammelete Mathematische Abhandlungen, Springer (1890)
,[38] On the evolution of harmonic mappings of Riemannian surfaces, Comment. Math. Helv. 60 (1985) 558
,[39] An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl. 26 (1969) 318
,Cité par Sources :