Cobordism of singular maps
Geometry & topology, Tome 12 (2008) no. 4, pp. 2379-2452.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Throughout this paper we consider smooth maps of positive codimensions, having only stable singularities (see Arnold, Guseĭn-Zade and Varchenko [Monographs in Math. 83, Birkhauser, Boston (1988)]. We prove a conjecture, due to M Kazarian, connecting two classifying spaces in singularity theory for this type of singular maps. These spaces are: 1) Kazarian’s space (generalising Vassiliev’s algebraic complex and) showing which cohomology classes are represented by singularity strata. 2) The space Xτ giving homotopy representation of cobordisms of singular maps with a given list of allowed singularities as in work of Rimányi and the author [Topology 37 (1998) 1177–1191; Mat. Sb. (N.S.) 108 (150) (1979) 433–456, 478; Lecture Notes in Math. 788, Springer, Berlin (1980) 223–244].

We obtain that the ranks of cobordism groups of singular maps with a given list of allowed stable singularities, and also their p–torsion parts for big primes p coincide with those of the homology groups of the corresponding Kazarian space. (A prime p is “big” if it is greater than half of the dimension of the source manifold.) For all types of Morin maps (ie when the list of allowed singularities contains only corank 1 maps) we compute these ranks explicitly.

We give a very transparent homotopical description of the classifying space Xτ as a fibration. Using this fibration we solve the problem of elimination of singularities by cobordisms. (This is a modification of a question posed by Arnold [Itogi Nauki i Tekniki, Moscow (1988) 5–257].)

DOI : 10.2140/gt.2008.12.2379
Keywords: cobordism, singular map, Pontrjagin–Thom construction, Kazarian spectral sequence

Szűcs, András 1

1 Eötvös Loránd University, Pázmány Péter sétány 1/C, 3-206, 1117 Budapest, Hungary
@article{GT_2008_12_4_a12,
     author = {Sz\'{u}cs, Andr\'as},
     title = {Cobordism of singular maps},
     journal = {Geometry & topology},
     pages = {2379--2452},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2008},
     doi = {10.2140/gt.2008.12.2379},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2379/}
}
TY  - JOUR
AU  - Szűcs, András
TI  - Cobordism of singular maps
JO  - Geometry & topology
PY  - 2008
SP  - 2379
EP  - 2452
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2379/
DO  - 10.2140/gt.2008.12.2379
ID  - GT_2008_12_4_a12
ER  - 
%0 Journal Article
%A Szűcs, András
%T Cobordism of singular maps
%J Geometry & topology
%D 2008
%P 2379-2452
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2379/
%R 10.2140/gt.2008.12.2379
%F GT_2008_12_4_a12
Szűcs, András. Cobordism of singular maps. Geometry & topology, Tome 12 (2008) no. 4, pp. 2379-2452. doi : 10.2140/gt.2008.12.2379. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2379/

[1] Y Ando, Cobordism of maps without prescribed singularities

[2] D Arlettaz, Exponents for extraordinary homology groups, Comment. Math. Helv. 68 (1993) 653

[3] V I Arnol’D, S M Guseĭn-Zade, A N Varchenko, Singularities of differentiable maps Vol I: The classification of critical points, caustics and wave fronts, Monographs in Math. 82, Birkhäuser (1985)

[4] V I Arnol’D, V A Vasil’Ev, V V Goryunov, O V Lyashko, Singularities I: Local and global theory, from: "Current problems in mathematics. Fundamental directions, Vol. 6", Itogi Nauki i Tekhniki, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform. (1988) 5

[5] M F Atiyah, Bordism and cobordism, Proc. Cambridge Philos. Soc. 57 (1961) 200

[6] M G Barratt, P J Eccles, $\Gamma^{+}$–structures I: A free group functor for stable homotopy theory, Topology 13 (1974) 25

[7] O Burlet, Cobordismes de plongements et produits homotopiques, Comment. Math. Helv. 46 (1971) 277

[8] D S Chess, Singularity theory and configuration space models of $\Omega^nS^n$ of nonconnected spaces, Topology Appl. 25 (1987) 313

[9] P E Conner, E E Floyd, Differentiable periodic maps, Ergebnisse series 33, Springer (1964)

[10] T Ekholm, A Szűcs, T Terpai, Cobordisms of fold maps and maps with a prescribed number of cusps, Kyushu J. Math. 61 (2007) 395

[11] J Eliashberg, Cobordisme des solutions de relations différentielles, from: "South Rhone seminar on geometry, I (Lyon, 1983)", Travaux en Cours, Hermann (1984) 17

[12] R Godement, Topologie algébrique et théorie des faisceaux, Actualit'es Sci. Ind. 1252, Publ. Math. Univ. Strasbourg 13, Hermann (1958)

[13] M Gromov, Partial differential relations, Ergebnisse series 9, Springer (1986)

[14] A Haefliger, A Kosiński, Un théorème de Thom sur les singularités des applications différentiables, from: "Séminaire Henri Cartan; 9e année: 1956/57. Quelques questions de topologie, Exposé no. 8", Secrétariat mathématique (1958) 6

[15] A Hatcher, Algebraic topology, Cambridge University Press (2002)

[16] D Husemoller, Fibre bundles, McGraw-Hill (1966)

[17] K Ikegami, Cobordism group of Morse functions on manifolds, Hiroshima Math. J. 34 (2004) 211

[18] K Ikegami, O Saeki, Cobordism group of Morse functions on surfaces, J. Math. Soc. Japan 55 (2003) 1081

[19] K Jänich, Symmetry properties of singularities of $C^{\infty }$–functions, Math. Ann. 238 (1978) 147

[20] B Kalmár, Cobordism group of Morse functions on unoriented surfaces, Kyushu J. Math. 59 (2005) 351

[21] M Kazarian, private communication

[22] M Kazarian, Classifying spaces of singularities and Thom polynomials, from: "New developments in singularity theory (Cambridge, 2000)", NATO Sci. Ser. II Math. Phys. Chem. 21, Kluwer Acad. Publ. (2001) 117

[23] M Kazarian, Characteristic classes in singularity theory, Habilitation thesis, Moscow (2003)

[24] U Koschorke, Vector fields and other vector bundle morphisms—a singularity approach, Lecture Notes in Math. 847, Springer (1981)

[25] G Lippner, A Szűcs, Multiplicative properties of Morin maps

[26] J N Mather, Stability of $C^{\infty}$ mappings IV: Classification of stable germs by $R$–algebras, Inst. Hautes Études Sci. Publ. Math. (1969) 223

[27] J W Milnor, J D Stasheff, Characteristic classes, Annals of Math. Studies 76, Princeton University Press (1974)

[28] R E Mosher, M C Tangora, Cohomology operations and applications in homotopy theory, Harper Row Publishers (1968)

[29] R Rimányi, A Szűcs, Pontrjagin–Thom–type construction for maps with singularities, Topology 37 (1998) 1177

[30] C Rourke, B Sanderson, The compression theorem I, Geom. Topol. 5 (2001) 399

[31] R Sadykov, Bordism groups of solutions of differential relations

[32] O Saeki, Topology of singular fibers of differentiable maps, Lecture Notes in Math. 1854, Springer (2004)

[33] J P Serre, Groupes d'homotopie et classes de groupes abéliens, Ann. of Math. $(2)$ 58 (1953) 258

[34] A Szűcs, Analogue of the Thom space for mappings with singularity of type $\Sigma^{1}$, Mat. Sb. $($N.S.$)$ 108 (150) (1979) 433, 478

[35] A Szűcs, Cobordism of maps with simplest singularities, from: "Proc. Sympos., Univ. Siegen, 1979)", Lecture Notes in Math. 788, Springer (1980) 223

[36] A Szűcs, Cobordism of immersions and singular maps, loop spaces and multiple points, from: "Geometric and algebraic topology", Banach Center Publ. 18, PWN (1986) 239

[37] A Szűcs, On the cobordism groups of immersions and embeddings, Math. Proc. Cambridge Philos. Soc. 109 (1991) 343

[38] A Szűcs, Topology of $\Sigma^{1,1}$–singular maps, Math. Proc. Cambridge Philos. Soc. 121 (1997) 465

[39] A Szűcs, On the cobordism group of Morin maps, Acta Math. Hungar. 80 (1998) 191

[40] A Szűcs, Elimination of singularities by cobordism, from: "Real and complex singularities", Contemp. Math. 354, Amer. Math. Soc. (2004) 301

[41] A Szűcs, Cobordism of singular maps

[42] T Terpai, Cobordisms of fold maps of $(2K+2)$–manfolds into $\mathbb{R}^{3K+2}$, to appear in Banach Center Publications

[43] R Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954) 17

[44] C T C Wall, A second note on symmetry of singularities, Bull. London Math. Soc. 12 (1980) 347

[45] R Wells, Cobordism groups of immersions, Topology 5 (1966) 281

Cité par Sources :