Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Given a closed monotone symplectic manifold , we define certain characteristic cohomology classes of the free loop space with values in , and their equivariant version. These classes generalize the Seidel representation and satisfy versions of the axioms for Chern classes. In particular there is a Whitney sum formula, which gives rise to a graded ring homomorphism from the ring , with its Pontryagin product to with its quantum product. As an application we prove an extension to higher dimensional geometry of the loop space of a theorem of McDuff and Slimowitz on minimality in the Hofer metric of a semifree Hamiltonian circle action.
Savelyev, Yasha 1
@article{GT_2008_12_4_a10, author = {Savelyev, Yasha}, title = {Quantum characteristic classes and the {Hofer} metric}, journal = {Geometry & topology}, pages = {2277--2326}, publisher = {mathdoc}, volume = {12}, number = {4}, year = {2008}, doi = {10.2140/gt.2008.12.2277}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2277/} }
Savelyev, Yasha. Quantum characteristic classes and the Hofer metric. Geometry & topology, Tome 12 (2008) no. 4, pp. 2277-2326. doi : 10.2140/gt.2008.12.2277. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2277/
[1] Volumes on normed and Finsler spaces, from: "A sampler of Riemann–Finsler geometry", Math. Sci. Res. Inst. Publ. 50, Cambridge Univ. Press (2004) 1
, ,[2] Relative family Gromov–Witten invariants and symplectomorphisms
,[3] Espaces fibrés et groupes d'homotopie II: Applications, C. R. Acad. Sci. Paris 234 (1952) 393
, ,[4] Geometric measure theory, Die Grund. der math. Wissenschaften 153, Springer (1969)
,[5] On the topological properties of symplectic maps, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990) 25
,[6] Floer Homology of families I
,[7] Floer Homology of families II, in preparation
,[8] The symplectic sum formula for Gromov–Witten invariants, Ann. of Math. $(2)$ 159 (2004) 935
, ,[9] Homotopy properties of Hamiltonian group actions, Geom. Topol. 9 (2005) 121
, ,[10] The geometry of symplectic energy, Ann. of Math. $(2)$ 141 (1995) 349
, ,[11] Hofer's $L^\infty$–geometry: energy and stability of Hamiltonian flows I, II, Invent. Math. 122 (1995) 1, 35
, ,[12] Symplectic surgery and Gromov–Witten invariants of Calabi–Yau 3–folds, Invent. Math. 145 (2001) 151
, ,[13] Private communication
,[14] Quantum homology of fibrations over $S^2$, Internat. J. Math. 11 (2000) 665
,[15] Geometric variants of the Hofer norm, J. Symplectic Geom. 1 (2002) 197
,[16] Introduction to symplectic topology, Oxford Math. Monographs, The Clarendon Oxford University Press (1998)
, ,[17] $J$–holomorphic curves and symplectic topology, American Math. Society Colloquium Publ. 52, Amer. Math. Soc. (2004)
, ,[18] Hofer–Zehnder capacity and length minimizing Hamiltonian paths, Geom. Topol. 5 (2001) 799
, ,[19] Topological properties of Hamiltonian circle actions, IMRP Int. Math. Res. Pap. (2006) 1
, ,[20] On the structure of Hopf algebras, Ann. of Math. $(2)$ 81 (1965) 211
, ,[21] Characteristic classes, Annals of Math. Studies 76, Princeton University Press (1974)
, ,[22] Characteristic classes in symplectic topology, Selecta Math. $($N.S.$)$ 3 (1997) 601
,[23] Virtual Morse theory on $\Omega \mathrm{Ham} (M, \omega)$, in progress
,[24] $\pi_1$ of symplectic automorphism groups and invertibles in quantum homology rings, Geom. Funct. Anal. 7 (1997) 1046
,[25] Conjugate points on geodesics of Hofer's metric, Differential Geom. Appl. 6 (1996) 327
,[26] Topological mirrors and quantum rings, from: "Essays on mirror manifolds", Int. Press (1992) 96
,Cité par Sources :