Quantum characteristic classes and the Hofer metric
Geometry & topology, Tome 12 (2008) no. 4, pp. 2277-2326.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Given a closed monotone symplectic manifold M, we define certain characteristic cohomology classes of the free loop space LHam(M,ω) with values in QH(M), and their S1 equivariant version. These classes generalize the Seidel representation and satisfy versions of the axioms for Chern classes. In particular there is a Whitney sum formula, which gives rise to a graded ring homomorphism from the ring H(ΩHam(M,ω), ), with its Pontryagin product to QH2n+(M) with its quantum product. As an application we prove an extension to higher dimensional geometry of the loop space LHam(M,ω) of a theorem of McDuff and Slimowitz on minimality in the Hofer metric of a semifree Hamiltonian circle action.

DOI : 10.2140/gt.2008.12.2277
Keywords: quantum homology, Hamiltonian group, energy flow, loop group, Hamiltonian symplectomorphism, Hofer metric

Savelyev, Yasha 1

1 Stony Brook University, Department of Mathematics, Stony Brook, NY 11790, USA
@article{GT_2008_12_4_a10,
     author = {Savelyev, Yasha},
     title = {Quantum characteristic classes and the {Hofer} metric},
     journal = {Geometry & topology},
     pages = {2277--2326},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2008},
     doi = {10.2140/gt.2008.12.2277},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2277/}
}
TY  - JOUR
AU  - Savelyev, Yasha
TI  - Quantum characteristic classes and the Hofer metric
JO  - Geometry & topology
PY  - 2008
SP  - 2277
EP  - 2326
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2277/
DO  - 10.2140/gt.2008.12.2277
ID  - GT_2008_12_4_a10
ER  - 
%0 Journal Article
%A Savelyev, Yasha
%T Quantum characteristic classes and the Hofer metric
%J Geometry & topology
%D 2008
%P 2277-2326
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2277/
%R 10.2140/gt.2008.12.2277
%F GT_2008_12_4_a10
Savelyev, Yasha. Quantum characteristic classes and the Hofer metric. Geometry & topology, Tome 12 (2008) no. 4, pp. 2277-2326. doi : 10.2140/gt.2008.12.2277. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2277/

[1] J C Álvarez Paiva, A C Thompson, Volumes on normed and Finsler spaces, from: "A sampler of Riemann–Finsler geometry", Math. Sci. Res. Inst. Publ. 50, Cambridge Univ. Press (2004) 1

[2] O Buse, Relative family Gromov–Witten invariants and symplectomorphisms

[3] H Cartan, J P Serre, Espaces fibrés et groupes d'homotopie II: Applications, C. R. Acad. Sci. Paris 234 (1952) 393

[4] H Federer, Geometric measure theory, Die Grund. der math. Wissenschaften 153, Springer (1969)

[5] H Hofer, On the topological properties of symplectic maps, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990) 25

[6] M Hutchings, Floer Homology of families I

[7] M Hutchings, Floer Homology of families II, in preparation

[8] E N Ionel, T H Parker, The symplectic sum formula for Gromov–Witten invariants, Ann. of Math. $(2)$ 159 (2004) 935

[9] J Kędra, D Mcduff, Homotopy properties of Hamiltonian group actions, Geom. Topol. 9 (2005) 121

[10] F Lalonde, D Mcduff, The geometry of symplectic energy, Ann. of Math. $(2)$ 141 (1995) 349

[11] F Lalonde, D Mcduff, Hofer's $L^\infty$–geometry: energy and stability of Hamiltonian flows I, II, Invent. Math. 122 (1995) 1, 35

[12] A M Li, Y Ruan, Symplectic surgery and Gromov–Witten invariants of Calabi–Yau 3–folds, Invent. Math. 145 (2001) 151

[13] D Mcduff, Private communication

[14] D Mcduff, Quantum homology of fibrations over $S^2$, Internat. J. Math. 11 (2000) 665

[15] D Mcduff, Geometric variants of the Hofer norm, J. Symplectic Geom. 1 (2002) 197

[16] D Mcduff, D Salamon, Introduction to symplectic topology, Oxford Math. Monographs, The Clarendon Oxford University Press (1998)

[17] D Mcduff, D Salamon, $J$–holomorphic curves and symplectic topology, American Math. Society Colloquium Publ. 52, Amer. Math. Soc. (2004)

[18] D Mcduff, J Slimowitz, Hofer–Zehnder capacity and length minimizing Hamiltonian paths, Geom. Topol. 5 (2001) 799

[19] D Mcduff, S Tolman, Topological properties of Hamiltonian circle actions, IMRP Int. Math. Res. Pap. (2006) 1

[20] J W Milnor, J C Moore, On the structure of Hopf algebras, Ann. of Math. $(2)$ 81 (1965) 211

[21] J W Milnor, J D Stasheff, Characteristic classes, Annals of Math. Studies 76, Princeton University Press (1974)

[22] A G Reznikov, Characteristic classes in symplectic topology, Selecta Math. $($N.S.$)$ 3 (1997) 601

[23] Y Savelyev, Virtual Morse theory on $\Omega \mathrm{Ham} (M, \omega)$, in progress

[24] P Seidel, $\pi_1$ of symplectic automorphism groups and invertibles in quantum homology rings, Geom. Funct. Anal. 7 (1997) 1046

[25] I Ustilovsky, Conjugate points on geodesics of Hofer's metric, Differential Geom. Appl. 6 (1996) 327

[26] C Vafa, Topological mirrors and quantum rings, from: "Essays on mirror manifolds", Int. Press (1992) 96

Cité par Sources :