Knot concordance and Heegaard Floer homology invariants in branched covers
Geometry & topology, Tome 12 (2008) no. 4, pp. 2249-2275.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

By studying the Heegaard Floer homology of the preimage of a knot K S3 inside its double branched cover, we develop simple obstructions to K having finite order in the classical smooth concordance group. As an application, we prove that all 2–bridge knots of crossing number at most 12 for which the smooth concordance order was previously unknown have infinite smooth concordance order.

DOI : 10.2140/gt.2008.12.2249
Keywords: Smooth knot concordance, Heegaard Floer homology, branched covers, Knot concordance, branched cover, $\tau$–invariant

Grigsby, J Elisenda 1 ; Ruberman, Daniel 2 ; Strle, Sašo 3

1 Department of Mathematics, Columbia University, 2990 Broadway MC4406, New York, NY 10027, USA
2 Department of Mathematics, MS 050, Brandeis University, Waltham, MA 02454, USA
3 Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 21, 1000 Ljubljana, Slovenia
@article{GT_2008_12_4_a9,
     author = {Grigsby, J Elisenda and Ruberman, Daniel and Strle, Sa\v{s}o},
     title = {Knot concordance and {Heegaard} {Floer} homology invariants in branched covers},
     journal = {Geometry & topology},
     pages = {2249--2275},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2008},
     doi = {10.2140/gt.2008.12.2249},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2249/}
}
TY  - JOUR
AU  - Grigsby, J Elisenda
AU  - Ruberman, Daniel
AU  - Strle, Sašo
TI  - Knot concordance and Heegaard Floer homology invariants in branched covers
JO  - Geometry & topology
PY  - 2008
SP  - 2249
EP  - 2275
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2249/
DO  - 10.2140/gt.2008.12.2249
ID  - GT_2008_12_4_a9
ER  - 
%0 Journal Article
%A Grigsby, J Elisenda
%A Ruberman, Daniel
%A Strle, Sašo
%T Knot concordance and Heegaard Floer homology invariants in branched covers
%J Geometry & topology
%D 2008
%P 2249-2275
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2249/
%R 10.2140/gt.2008.12.2249
%F GT_2008_12_4_a9
Grigsby, J Elisenda; Ruberman, Daniel; Strle, Sašo. Knot concordance and Heegaard Floer homology invariants in branched covers. Geometry & topology, Tome 12 (2008) no. 4, pp. 2249-2275. doi : 10.2140/gt.2008.12.2249. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2249/

[1] A J Casson, C M Gordon, Cobordism of classical knots, from: "À la recherche de la topologie perdue", Progr. Math. 62, Birkhäuser (1986) 181

[2] J C Cha, C Livingston, Unknown values in the table of knots (2005)

[3] J C Cha, C Livingston, Knotinfo table of knot invariants (2006)

[4] T D Cochran, K E Orr, P Teichner, Knot concordance, Whitney towers and $L^2$–signatures, Ann. of Math. $(2)$ 157 (2003) 433

[5] T D Cochran, K E Orr, P Teichner, Structure in the classical knot concordance group, Comment. Math. Helv. 79 (2004) 105

[6] S K Donaldson, An application of gauge theory to four-dimensional topology, J. Differential Geom. 18 (1983) 279

[7] J E Grigsby, Combinatorial description of knot Floer homology of cyclic branched covers (2006)

[8] J E Grigsby, Knot Floer homology in cyclic branched covers, Algebr. Geom. Topol. 6 (2006) 1355

[9] S Jabuka, S Naik, Order in the concordance group and Heegaard Floer homology, Geom. Topol. 11 (2007) 979

[10] B J Jiang, A simple proof that the concordance group of algebraically slice knots is infinitely generated, Proc. Amer. Math. Soc. 83 (1981) 189

[11] R C Kirby, Problems in low-dimensional topology, from: "Geometric topology (Athens, GA, 1993)", AMS/IP Stud. Adv. Math. 2, Amer. Math. Soc. (1997) 35

[12] D A Lee, R Lipshitz, Covering spaces and $\mathbb{Q}$ gradings on Heegaard Floer homology (2006)

[13] A Levine, On knots with infinite smooth concordance order (2008)

[14] P Lisca, Lens spaces, rational balls and the ribbon conjecture, Geom. Topol. 11 (2007) 429

[15] P Lisca, Sums of lens spaces bounding rational balls, Algebr. Geom. Topol. 7 (2007) 2141

[16] C Livingston, S Naik, Obstructing four-torsion in the classical knot concordance group, J. Differential Geom. 51 (1999) 1

[17] C Livingston, S Naik, Knot concordance and torsion, Asian J. Math. 5 (2001) 161

[18] C Manolescu, B Owens, A concordance invariant from the Floer homology of double branched covers, Int. Math. Res. Not. IMRN (2007) 21

[19] C Manolescu, P Ozsváth, S Sarkar, A Combinatorial Description of Knot Floer Homology (2006)

[20] C Manolescu, P Ozsváth, Z Szabó, D Thurston, On combinatorial link Floer homology, Geom. Topol. 11 (2007) 2339

[21] B Owens, S Strle, Rational homology spheres and the four-ball genus of knots, Adv. Math. 200 (2006) 196

[22] P Ozsváth, Z Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003) 179

[23] P Ozsváth, Z Szabó, Knot Floer homology and the four-ball genus, Geom. Topol. 7 (2003) 615

[24] P Ozsváth, Z Szabó, Holomorphic disks and knot invariants, Adv. Math. 186 (2004) 58

[25] P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. $(2)$ 159 (2004) 1027

[26] P Ozsváth, Z Szabó, Holomorphic disks, link invariants and the multi-variable Alexander polynomial (2005)

[27] P Ozsváth, Z Szabó, Holomorphic triangles and invariants for smooth four-manifolds, Adv. Math. 202 (2006) 326

[28] J Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003)

[29] J Rasmussen, Khovanov homology and the slice genus, to appear in Invent. Math. (2004)

[30] J Rasmussen, Knot polynomials and knot homologies, from: "Geometry and topology of manifolds", Fields Inst. Commun. 47, Amer. Math. Soc. (2005) 261

[31] S Sarkar, J Wang, A Combinatorial Description of Some Heegaard Floer Homologies (2006)

[32] B The Pari Group, PARI/GP, version \tt2.3.1 (2005)

[33] V Turaev, Torsion invariants of $\mathrm{Spin}^c$–structures on $3$–manifolds, Math. Res. Lett. 4 (1997) 679

Cité par Sources :