Orbifold string topology
Geometry & topology, Tome 12 (2008) no. 4, pp. 2203-2247.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

In this paper we study the string topology (à la Chas–Sullivan) of an orbifold. We define the string homology ring product at the level of the free loop space of the classifying space of an orbifold. We study its properties and do some explicit calculations.

DOI : 10.2140/gt.2008.12.2203
Keywords: orbifold, loop space, string topology

Lupercio, Ernesto 1 ; Uribe, Bernardo 2 ; Xicotencatl, Miguel A 1

1 Departamento de Matemáticas, CINVESTAV, Apartado Postal 14-740, 07000 México, DF México
2 Departamento de Matemáticas, Universidad de los Andes, Carrera 1 N. 18A - 10, Bogotá, Colombia
@article{GT_2008_12_4_a8,
     author = {Lupercio, Ernesto and Uribe, Bernardo and Xicotencatl, Miguel A},
     title = {Orbifold string topology},
     journal = {Geometry & topology},
     pages = {2203--2247},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2008},
     doi = {10.2140/gt.2008.12.2203},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2203/}
}
TY  - JOUR
AU  - Lupercio, Ernesto
AU  - Uribe, Bernardo
AU  - Xicotencatl, Miguel A
TI  - Orbifold string topology
JO  - Geometry & topology
PY  - 2008
SP  - 2203
EP  - 2247
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2203/
DO  - 10.2140/gt.2008.12.2203
ID  - GT_2008_12_4_a8
ER  - 
%0 Journal Article
%A Lupercio, Ernesto
%A Uribe, Bernardo
%A Xicotencatl, Miguel A
%T Orbifold string topology
%J Geometry & topology
%D 2008
%P 2203-2247
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2203/
%R 10.2140/gt.2008.12.2203
%F GT_2008_12_4_a8
Lupercio, Ernesto; Uribe, Bernardo; Xicotencatl, Miguel A. Orbifold string topology. Geometry & topology, Tome 12 (2008) no. 4, pp. 2203-2247. doi : 10.2140/gt.2008.12.2203. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2203/

[1] H Abbaspour, R L Cohen, K Gruher, String topology of Poincaré duality groups, from: "Proceedings of the conference on groups, homotopy and configuration spaces" (editor N Iwase et al), Geom. Topol. Monogr. 13, Geom. Topol. Publ. (2008) 1

[2] J F Adams, Infinite loop spaces, Annals of Math. Studies 90, Princeton Univ. Press (1978)

[3] A Adem, J Leida, Y Ruan, Orbifolds and stringy topology, Cambridge Tracts in Math. 171, Cambridge Univ. Press (2007)

[4] A Adem, Y Ruan, Twisted orbifold $K$–theory, Comm. Math. Phys. 237 (2003) 533

[5] I A Batalin, G A Vilkovisky, Existence theorem for gauge algebra, J. Math. Phys. 26 (1985) 172

[6] M R Bridson, A Haefliger, Metric spaces of non-positive curvature, Grund. der Math. Wissenschaften 319, Springer (1999)

[7] M Chas, D Sullivan, String topology

[8] R L Cohen, V Godin, A polarized view of string topology, from: "Topology, geometry and quantum field theory", London Math. Soc. Lecture Note Ser. 308, Cambridge Univ. Press (2004) 127

[9] R L Cohen, J D S Jones, A homotopy theoretic realization of string topology, Math. Ann. 324 (2002) 773

[10] R L Cohen, J D S Jones, J Yan, The loop homology algebra of spheres and projective spaces, from: "Categorical decomposition techniques in algebraic topology (Isle of Skye, 2001)", Progr. Math. 215, Birkhäuser (2004) 77

[11] R L Cohen, A A Voronov, Notes on string topology, from: "String topology and cyclic homology", Adv. Courses Math. CRM Barcelona, Birkhäuser (2006) 1

[12] R Dijkgraaf, E Witten, Topological gauge theories and group cohomology, Comm. Math. Phys. 129 (1990) 393

[13] A Dold, Partitions of unity in the theory of fibrations, Ann. of Math. $(2)$ 78 (1963) 223

[14] E Getzler, Batalin–Vilkovisky algebras and two-dimensional topological field theories, Comm. Math. Phys. 159 (1994) 265

[15] J D S Jones, Cyclic homology and equivariant homology, Invent. Math. 87 (1987) 403

[16] E Lupercio, B Uribe, Loop groupoids, gerbes, and twisted sectors on orbifolds, from: "Orbifolds in mathematics and physics (Madison, WI, 2001)", Contemp. Math. 310, Amer. Math. Soc. (2002) 163

[17] E Lupercio, B Uribe, Inertia orbifolds, configuration spaces and the ghost loop space, Q. J. Math. 55 (2004) 185

[18] E Lupercio, B Uribe, Holonomy for gerbes over orbifolds, J. Geom. Phys. 56 (2006) 1534

[19] I Moerdijk, Orbifolds as groupoids: an introduction, from: "Orbifolds in mathematics and physics (Madison, WI, 2001)", Contemp. Math. 310, Amer. Math. Soc. (2002) 205

[20] G Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. (1968) 105

[21] A A Voronov, Notes on universal algebra, from: "Graphs and patterns in mathematics and theoretical physics", Proc. Sympos. Pure Math. 73, Amer. Math. Soc. (2005) 81

Cité par Sources :