Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
We continue our study of the monoid of right-veering diffeomorphisms on a compact oriented surface with nonempty boundary, introduced in [Invent. Math. 169 (2007) 427–449]. We conduct a detailed study of the case when the surface is a punctured torus; in particular, we exhibit the difference between the monoid of right-veering diffeomorphisms and the monoid of products of positive Dehn twists, with the help of the Rademacher function. We then generalize to the braid group on strands by relating the signature and the Maslov index. Finally, we discuss the symplectic fillability in the pseudo-Anosov case by comparing with the work of Roberts [Proc. London Math. Soc. (3) 82/83 (2001) 747–768/443–471].
Honda, Ko 1 ; Kazez, William H 2 ; Matić, Gordana 2
@article{GT_2008_12_4_a5, author = {Honda, Ko and Kazez, William H and Mati\'c, Gordana}, title = {Right-veering diffeomorphisms of compact surfaces with boundary {II}}, journal = {Geometry & topology}, pages = {2057--2094}, publisher = {mathdoc}, volume = {12}, number = {4}, year = {2008}, doi = {10.2140/gt.2008.12.2057}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2057/} }
TY - JOUR AU - Honda, Ko AU - Kazez, William H AU - Matić, Gordana TI - Right-veering diffeomorphisms of compact surfaces with boundary II JO - Geometry & topology PY - 2008 SP - 2057 EP - 2094 VL - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2057/ DO - 10.2140/gt.2008.12.2057 ID - GT_2008_12_4_a5 ER -
%0 Journal Article %A Honda, Ko %A Kazez, William H %A Matić, Gordana %T Right-veering diffeomorphisms of compact surfaces with boundary II %J Geometry & topology %D 2008 %P 2057-2094 %V 12 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2057/ %R 10.2140/gt.2008.12.2057 %F GT_2008_12_4_a5
Honda, Ko; Kazez, William H; Matić, Gordana. Right-veering diffeomorphisms of compact surfaces with boundary II. Geometry & topology, Tome 12 (2008) no. 4, pp. 2057-2094. doi : 10.2140/gt.2008.12.2057. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2057/
[1] Cocycles d'Euler et de Maslov, Math. Ann. 294 (1992) 235
, ,[2] Confoliations, University Lecture Series 13, Amer. Math. Soc. (1998)
, ,[3] Legendrian and transversal knots, from: "Handbook of knot theory", Elsevier B. V. (2005) 105
,[4] Commutators and diffeomorphisms of surfaces, Ergodic Theory Dynam. Systems 24 (2004) 1591
, ,[5] Braids and signatures, Bull. Soc. Math. France 133 (2005) 541
, ,[6] Groups acting on the circle, Enseign. Math. $(2)$ 47 (2001) 329
,[7] Géométrie de contact: de la dimension trois vers les dimensions supérieures, from: "Proc. of the ICM, Vol. II (Beijing, 2002)", Higher Ed. Press (2002) 405
,[8] Some examples of essential laminations in $3$–manifolds, Ann. Inst. Fourier (Grenoble) 42 (1992) 313
,[9] On the classification of tight contact structures. I, Geom. Topol. 4 (2000) 309
,[10] On the contact class in Heegaard Floer homology
, , ,[11] Tight contact structures on fibered hyperbolic $3$–manifolds, J. Differential Geom. 64 (2003) 305
, , ,[12] Right-veering diffeomorphisms of compact surfaces with boundary, Invent. Math. 169 (2007) 427
, , ,[13] Markov moves for quasipositive braids, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000) 557
,[14] The Maslov index for paths, Topology 32 (1993) 827
, ,[15] Taut foliations in punctured surface bundles. I, Proc. London Math. Soc. $(3)$ 82 (2001) 747
,[16] Taut foliations in punctured surface bundles. II, Proc. London Math. Soc. $(3)$ 83 (2001) 443
,[17] On the existence of contact forms, Proc. Amer. Math. Soc. 52 (1975) 345
, ,Cité par Sources :