Right-veering diffeomorphisms of compact surfaces with boundary II
Geometry & topology, Tome 12 (2008) no. 4, pp. 2057-2094.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We continue our study of the monoid of right-veering diffeomorphisms on a compact oriented surface with nonempty boundary, introduced in [Invent. Math. 169 (2007) 427–449]. We conduct a detailed study of the case when the surface is a punctured torus; in particular, we exhibit the difference between the monoid of right-veering diffeomorphisms and the monoid of products of positive Dehn twists, with the help of the Rademacher function. We then generalize to the braid group Bn on n strands by relating the signature and the Maslov index. Finally, we discuss the symplectic fillability in the pseudo-Anosov case by comparing with the work of Roberts [Proc. London Math. Soc. (3) 82/83 (2001) 747–768/443–471].

DOI : 10.2140/gt.2008.12.2057
Keywords: tight, contact structure, bypass, open book decomposition, fibered link, mapping class group, Dehn twists

Honda, Ko 1 ; Kazez, William H 2 ; Matić, Gordana 2

1 Department of Mathematics, University of Southern California, Los Angeles, CA 90089, USA
2 Department of Mathematics, University of Georgia, Athens, GA 30602, USA
@article{GT_2008_12_4_a5,
     author = {Honda, Ko and Kazez, William H and Mati\'c, Gordana},
     title = {Right-veering diffeomorphisms of compact surfaces with boundary {II}},
     journal = {Geometry & topology},
     pages = {2057--2094},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2008},
     doi = {10.2140/gt.2008.12.2057},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2057/}
}
TY  - JOUR
AU  - Honda, Ko
AU  - Kazez, William H
AU  - Matić, Gordana
TI  - Right-veering diffeomorphisms of compact surfaces with boundary II
JO  - Geometry & topology
PY  - 2008
SP  - 2057
EP  - 2094
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2057/
DO  - 10.2140/gt.2008.12.2057
ID  - GT_2008_12_4_a5
ER  - 
%0 Journal Article
%A Honda, Ko
%A Kazez, William H
%A Matić, Gordana
%T Right-veering diffeomorphisms of compact surfaces with boundary II
%J Geometry & topology
%D 2008
%P 2057-2094
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2057/
%R 10.2140/gt.2008.12.2057
%F GT_2008_12_4_a5
Honda, Ko; Kazez, William H; Matić, Gordana. Right-veering diffeomorphisms of compact surfaces with boundary II. Geometry & topology, Tome 12 (2008) no. 4, pp. 2057-2094. doi : 10.2140/gt.2008.12.2057. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2057/

[1] J Barge, É Ghys, Cocycles d'Euler et de Maslov, Math. Ann. 294 (1992) 235

[2] Y M Eliashberg, W P Thurston, Confoliations, University Lecture Series 13, Amer. Math. Soc. (1998)

[3] J B Etnyre, Legendrian and transversal knots, from: "Handbook of knot theory", Elsevier B. V. (2005) 105

[4] J M Gambaudo, É Ghys, Commutators and diffeomorphisms of surfaces, Ergodic Theory Dynam. Systems 24 (2004) 1591

[5] J M Gambaudo, É Ghys, Braids and signatures, Bull. Soc. Math. France 133 (2005) 541

[6] É Ghys, Groups acting on the circle, Enseign. Math. $(2)$ 47 (2001) 329

[7] E Giroux, Géométrie de contact: de la dimension trois vers les dimensions supérieures, from: "Proc. of the ICM, Vol. II (Beijing, 2002)", Higher Ed. Press (2002) 405

[8] A Hatcher, Some examples of essential laminations in $3$–manifolds, Ann. Inst. Fourier (Grenoble) 42 (1992) 313

[9] K Honda, On the classification of tight contact structures. I, Geom. Topol. 4 (2000) 309

[10] K Honda, W H Kazez, G Matić, On the contact class in Heegaard Floer homology

[11] K Honda, W H Kazez, G Matić, Tight contact structures on fibered hyperbolic $3$–manifolds, J. Differential Geom. 64 (2003) 305

[12] K Honda, W H Kazez, G Matić, Right-veering diffeomorphisms of compact surfaces with boundary, Invent. Math. 169 (2007) 427

[13] S Y Orevkov, Markov moves for quasipositive braids, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000) 557

[14] J Robbin, D Salamon, The Maslov index for paths, Topology 32 (1993) 827

[15] R Roberts, Taut foliations in punctured surface bundles. I, Proc. London Math. Soc. $(3)$ 82 (2001) 747

[16] R Roberts, Taut foliations in punctured surface bundles. II, Proc. London Math. Soc. $(3)$ 83 (2001) 443

[17] W P Thurston, H E Winkelnkemper, On the existence of contact forms, Proc. Amer. Math. Soc. 52 (1975) 345

Cité par Sources :