LERF and the Lubotzky–Sarnak Conjecture
Geometry & topology, Tome 12 (2008) no. 4, pp. 2047-2056.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

We prove that every closed hyperbolic 3–manifold has a family of (possibly infinite sheeted) coverings with the property that the Cheeger constants in the family tend to zero. This is used to show that, if in addition the fundamental group of the manifold is LERF, then it satisfies the Lubotzky–Sarnak conjecture.

DOI : 10.2140/gt.2008.12.2047
Keywords: subgroup separability, Cheeger constant, Lubotzky–Sarnak conjecture

Lackenby, Marc 1 ; Long, Darren D 2 ; Reid, Alan W 3

1 Mathematical Institute, University of Oxford, 24-29 St Giles’, Oxford OX1 3LB, UK
2 Department of Mathematics, University of California, Santa Barbara, CA 93106, USA
3 Department of Mathematics, University of Texas, Austin, TX 78712, USA
@article{GT_2008_12_4_a4,
     author = {Lackenby, Marc and Long, Darren D and Reid, Alan W},
     title = {LERF and the {Lubotzky{\textendash}Sarnak} {Conjecture}},
     journal = {Geometry & topology},
     pages = {2047--2056},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2008},
     doi = {10.2140/gt.2008.12.2047},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2047/}
}
TY  - JOUR
AU  - Lackenby, Marc
AU  - Long, Darren D
AU  - Reid, Alan W
TI  - LERF and the Lubotzky–Sarnak Conjecture
JO  - Geometry & topology
PY  - 2008
SP  - 2047
EP  - 2056
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2047/
DO  - 10.2140/gt.2008.12.2047
ID  - GT_2008_12_4_a4
ER  - 
%0 Journal Article
%A Lackenby, Marc
%A Long, Darren D
%A Reid, Alan W
%T LERF and the Lubotzky–Sarnak Conjecture
%J Geometry & topology
%D 2008
%P 2047-2056
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2047/
%R 10.2140/gt.2008.12.2047
%F GT_2008_12_4_a4
Lackenby, Marc; Long, Darren D; Reid, Alan W. LERF and the Lubotzky–Sarnak Conjecture. Geometry & topology, Tome 12 (2008) no. 4, pp. 2047-2056. doi : 10.2140/gt.2008.12.2047. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2047/

[1] I Agol, Tameness of hyperbolic 3–manifolds

[2] I Agol, D Groves, J Manning, Residual finiteness, QCERF and fillings of hyperbolic groups

[3] I Agol, D D Long, A W Reid, The Bianchi groups are separable on geometrically finite subgroups, Ann. of Math. $(2)$ 153 (2001) 599

[4] L Bowen, Free groups in lattices

[5] R Brooks, The spectral geometry of a tower of coverings, J. Differential Geom. 23 (1986) 97

[6] J Button, Largeness of LERF and 1–relator groups

[7] D Calegari, D Gabai, Shrinkwrapping and the taming of hyperbolic 3–manifolds, J. Amer. Math. Soc. 19 (2006) 385

[8] S Y Cheng, S T Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975) 333

[9] L Clozel, Démonstration de la conjecture $\tau$, Invent. Math. 151 (2003) 297

[10] D Cooper, D D Long, A W Reid, Bundles and finite foliations, Invent. Math. 118 (1994) 255

[11] K Corlette, Hausdorff dimensions of limit sets. I, Invent. Math. 102 (1990) 521

[12] L Greenberg, Finiteness theorems for Fuchsian and Kleinian groups, from: "Discrete groups and automorphic functions (Proc. Conf., Cambridge, 1975)", Academic Press (1977) 199

[13] F Haglund, D T Wise, Special cube complexes, Geom. Funct. Anal. 17 (2008) 1551

[14] M Lackenby, Surface subgroups of Kleinian groups with torsion

[15] M Lackenby, Heegaard splittings, the virtually Haken conjecture and property $(\tau)$, Invent. Math. 164 (2006) 317

[16] M Lackenby, D D Long, A W Reid, Covering spaces of arithmetic $3$–orbifolds, to appear in International Math. Research Notices

[17] D D Long, Engulfing and subgroup separability for hyperbolic groups, Trans. Amer. Math. Soc. 308 (1988) 849

[18] D D Long, A W Reid, Surface subgroups and subgroup separability in 3-manifold topology, Publicações Matemáticas do IMPA, Instituto Nacional de Matemática Pura e Aplicada (IMPA), Rio de Janeiro (2005) 53

[19] A Lubotzky, Discrete groups, expanding graphs and invariant measures, Progress in Mathematics 125, Birkhäuser Verlag (1994)

[20] A Lubotzky, Free quotients and the first Betti number of some hyperbolic manifolds, Transform. Groups 1 (1996) 71

[21] A Lubotzky, A Zuk, On Property $\tau$, Monograph to appear

[22] C T Mcmullen, Hausdorff dimension and conformal dynamics. I. Strong convergence of Kleinian groups, J. Differential Geom. 51 (1999) 471

[23] P Scott, Subgroups of surface groups are almost geometric, J. London Math. Soc. $(2)$ 17 (1978) 555

[24] D Sullivan, Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math. 153 (1984) 259

[25] D Sullivan, Related aspects of positivity in Riemannian geometry, J. Differential Geom. 25 (1987) 327

Cité par Sources :