On boundary value problems for Einstein metrics
Geometry & topology, Tome 12 (2008) no. 4, pp. 2009-2045.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

On any given compact manifold Mn+1 with boundary M, it is proved that the moduli space of Einstein metrics on M, if non-empty, is a smooth, infinite dimensional Banach manifold, at least when π1(M,M) = 0. Thus, the Einstein moduli space is unobstructed. The usual Dirichlet and Neumann boundary maps to data on M are smooth, but not Fredholm. Instead, one has natural mixed boundary-value problems which give Fredholm boundary maps.

These results also hold for manifolds with compact boundary which have a finite number of locally asymptotically flat ends, as well as for the Einstein equations coupled to many other fields.

DOI : 10.2140/gt.2008.12.2009
Keywords: Einstein metrics, elliptic boundary, value problems

Anderson, Michael T 1

1 Dept of Mathematics, SUNY at Stony Brook, Stony Brook, NY 11794-3651, USA
@article{GT_2008_12_4_a3,
     author = {Anderson, Michael T},
     title = {On boundary value problems for {Einstein} metrics},
     journal = {Geometry & topology},
     pages = {2009--2045},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2008},
     doi = {10.2140/gt.2008.12.2009},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2009/}
}
TY  - JOUR
AU  - Anderson, Michael T
TI  - On boundary value problems for Einstein metrics
JO  - Geometry & topology
PY  - 2008
SP  - 2009
EP  - 2045
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2009/
DO  - 10.2140/gt.2008.12.2009
ID  - GT_2008_12_4_a3
ER  - 
%0 Journal Article
%A Anderson, Michael T
%T On boundary value problems for Einstein metrics
%J Geometry & topology
%D 2008
%P 2009-2045
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2009/
%R 10.2140/gt.2008.12.2009
%F GT_2008_12_4_a3
Anderson, Michael T. On boundary value problems for Einstein metrics. Geometry & topology, Tome 12 (2008) no. 4, pp. 2009-2045. doi : 10.2140/gt.2008.12.2009. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.2009/

[1] S Agmon, A Douglis, L Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I and II, Comm. Pure Appl. Math. 12 and 17 (1964)

[2] M Anderson, Geometric aspects of the AdS/CFT correspondence, from: "AdS/CFT correspondence: Einstein metrics and their conformal boundaries", IRMA Lect. Math. Theor. Phys. 8, Eur. Math. Soc., Zürich (2005) 1

[3] M T Anderson, M Herzlich, Unique continuation results for Ricci curvature and applications, J. Geom. Phys. 58 (2008) 179

[4] M Anderson, A Katsuda, Y Kurylev, M Lassas, M Taylor, Boundary regularity for the Ricci equation, geometric convergence, and Gel'fand's inverse boundary problem, Invent. Math. 158 (2004) 261

[5] A L Besse, Einstein manifolds, Ergebnisse series 10, Springer (1987)

[6] D G Ebin, The manifold of Riemannian metrics, from: "Global Analysis (Proc. Sympos. Pure Math., Vol. XV, Berkeley, Calif., 1968)", Amer. Math. Soc. (1970) 11

[7] J Eells, L Lemaire, Deformations of metrics and associated harmonic maps, from: "Geometry and analysis", Indian Acad. Sci. (1980) 33

[8] D Gilbarg, N S Trudinger, Elliptic partial differential equations of second order, Grundlehren series 224, Springer (1983)

[9] R S Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. $($N.S.$)$ 7 (1982) 65

[10] S W Hawking, G F R Ellis, The large scale structure of space-time, Cambridge University Press (1973)

[11] S Kobayashi, K Nomizu, Foundations of Differential Geometry, Volume 1, John Wiley, New York (1963)

[12] N Koiso, Rigidity and infinitesimal deformability of Einstein metrics, Osaka J. Math. 19 (1982) 643

[13] C Lebrun, M Wang, Surveys in differential geometry: essays on Einstein manifolds, Surveys in Differential Geometry, VI, International Press (1999)

[14] A Marini, Dirichlet and Neumann boundary value problems for Yang–Mills connections, Comm. Pure Appl. Math. 45 (1992) 1015

[15] R Mazzeo, R B Melrose, Pseudodifferential operators on manifolds with fibred boundaries, Asian J. Math. 2 (1998) 833

[16] C B Morrey Jr., Multiple integrals in the calculus of variations, Grundlehren series 130, Springer, New York (1966)

[17] J Nash, The imbedding problem for Riemannian manifolds, Ann. of Math. $(2)$ 63 (1956) 20

[18] L Nirenberg, The Weyl and Minkowski problems in differential geometry in the large, Comm. Pure Appl. Math. 6 (1953) 337

[19] J M Schlenker, Einstein manifolds with convex boundaries, Comment. Math. Helv. 76 (2001) 1

Cité par Sources :