Surface subgroups from homology
Geometry & topology, Tome 12 (2008) no. 4, pp. 1995-2007.

Voir la notice de l'article provenant de la source Mathematical Sciences Publishers

Let G be a word-hyperbolic group, obtained as a graph of free groups amalgamated along cyclic subgroups. If H2(G; ) is nonzero, then G contains a closed hyperbolic surface subgroup. Moreover, the unit ball of the Gromov–Thurston norm on H2(G; ) is a finite-sided rational polyhedron.

DOI : 10.2140/gt.2008.12.1995
Keywords: hyperbolic group, surface subgroup, graph of groups, Thurston norm, rational polyhedron

Calegari, Danny 1

1 Department of Mathematics, Caltech, Pasadena CA, 91125
@article{GT_2008_12_4_a2,
     author = {Calegari, Danny},
     title = {Surface subgroups from homology},
     journal = {Geometry & topology},
     pages = {1995--2007},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2008},
     doi = {10.2140/gt.2008.12.1995},
     url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1995/}
}
TY  - JOUR
AU  - Calegari, Danny
TI  - Surface subgroups from homology
JO  - Geometry & topology
PY  - 2008
SP  - 1995
EP  - 2007
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1995/
DO  - 10.2140/gt.2008.12.1995
ID  - GT_2008_12_4_a2
ER  - 
%0 Journal Article
%A Calegari, Danny
%T Surface subgroups from homology
%J Geometry & topology
%D 2008
%P 1995-2007
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1995/
%R 10.2140/gt.2008.12.1995
%F GT_2008_12_4_a2
Calegari, Danny. Surface subgroups from homology. Geometry & topology, Tome 12 (2008) no. 4, pp. 1995-2007. doi : 10.2140/gt.2008.12.1995. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1995/

[1] C Bavard, Longueur stable des commutateurs, Enseign. Math. $(2)$ 37 (1991) 109

[2] M Bestvina, Questions in geometric group theory

[3] D Calegari, scl, monograph

[4] D Calegari, Stable commutator length is rational in free groups

[5] D Gabai, Foliations and the topology of $3$–manifolds, J. Differential Geom. 18 (1983) 445

[6] S M Gersten, Cohomological lower bounds for isoperimetric functions on groups, Topology 37 (1998) 1031

[7] C M Gordon, D D Long, A W Reid, Surface subgroups of Coxeter and Artin groups, J. Pure Appl. Algebra 189 (2004) 135

[8] M Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. (1982) 5

[9] M Gromov, Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75

[10] A Hatcher, Algebraic topology, Cambridge University Press (2002)

[11] J Hempel, $3$–Manifolds, Ann. of Math. Studies 86, Princeton University Press (1976)

[12] S Mac Lane, Homology, Die Grund. der math. Wissenschaften 114, Academic Press Publishers (1963)

[13] P Scott, Subgroups of surface groups are almost geometric, J. London Math. Soc. $(2)$ 17 (1978) 555

[14] J P Serre, Trees, Springer Monographs in Math., Springer (2003)

[15] W P Thurston, A norm for the homology of $3$–manifolds, Mem. Amer. Math. Soc. 59 (1986)

Cité par Sources :