Voir la notice de l'article provenant de la source Mathematical Sciences Publishers
Let be a word-hyperbolic group, obtained as a graph of free groups amalgamated along cyclic subgroups. If is nonzero, then contains a closed hyperbolic surface subgroup. Moreover, the unit ball of the Gromov–Thurston norm on is a finite-sided rational polyhedron.
Calegari, Danny 1
@article{GT_2008_12_4_a2, author = {Calegari, Danny}, title = {Surface subgroups from homology}, journal = {Geometry & topology}, pages = {1995--2007}, publisher = {mathdoc}, volume = {12}, number = {4}, year = {2008}, doi = {10.2140/gt.2008.12.1995}, url = {http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1995/} }
Calegari, Danny. Surface subgroups from homology. Geometry & topology, Tome 12 (2008) no. 4, pp. 1995-2007. doi : 10.2140/gt.2008.12.1995. http://geodesic.mathdoc.fr/articles/10.2140/gt.2008.12.1995/
[1] Longueur stable des commutateurs, Enseign. Math. $(2)$ 37 (1991) 109
,[2] Questions in geometric group theory
,[3] scl, monograph
,[4] Stable commutator length is rational in free groups
,[5] Foliations and the topology of $3$–manifolds, J. Differential Geom. 18 (1983) 445
,[6] Cohomological lower bounds for isoperimetric functions on groups, Topology 37 (1998) 1031
,[7] Surface subgroups of Coxeter and Artin groups, J. Pure Appl. Algebra 189 (2004) 135
, , ,[8] Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math. (1982) 5
,[9] Hyperbolic groups, from: "Essays in group theory", Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75
,[10] Algebraic topology, Cambridge University Press (2002)
,[11] $3$–Manifolds, Ann. of Math. Studies 86, Princeton University Press (1976)
,[12] Homology, Die Grund. der math. Wissenschaften 114, Academic Press Publishers (1963)
,[13] Subgroups of surface groups are almost geometric, J. London Math. Soc. $(2)$ 17 (1978) 555
,[14] Trees, Springer Monographs in Math., Springer (2003)
,[15] A norm for the homology of $3$–manifolds, Mem. Amer. Math. Soc. 59 (1986)
,Cité par Sources :